
Music Processing Suite Documentation

User Guide

Version 1.13.0

08 April 2023

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

Table of Contents

1. Introduction
2. Installation

1. Overview
2. Requirements
3. Quick Installation Guide
4. Java Installation

1. How to Check if Java is Installed
5. Music Processing Suite Installation

1. Stand-alone Installation
2. Installation Into an Existing Eclipse Instance via Update Site

6. Optional Components
1. LilyPond Installation

1. LilyPond Configuration
2. MuseScore Installation

1. MuseScore Configuration
3. Graphviz Installation

1. Graphviz Configuration
4. LaTeX Installation

1. LaTeX Configuration
5. CoreNLP Installation

1. CoreNLP Configuration
3. Quickstart Tutorial

1. Creating Projects
2. Creating Compositions
3. Visualizing Context Tree Composition Models
4. Visualizing Context Layer Composition Models
5. Creating Scores and Lead Sheets
6. Analyzing Compositions

4. Context Layer Models
1. Introductory Example
2. Model Structure

1. Instrumentation Context
2. Metric Contexts
3. Harmonic Contexts
4. Rhythmic Contexts
5. Pitch Contexts
6. Loudness Contexts
7. Lyrics
8. Labels
9. Custom Contexts

3. Time Model
4. Parallel Streams

5. Composition Language and Context Tree Models
1. Introductory Example

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

2

2. Key Concepts
1. Hierarchical Structures
2. Inheritance
3. Polymorphism
4. Auto Expansion
5. Modularization using Fragments

3. Contexts
1. Rhythms

1. Examples
2. Anacruses

2. Time Signatures
3. Tempo
4. Instruments

1. Available Instruments
1. Instruments with Variable Pitches
2. Untuned Percussion Instruments

2. Instrument Definitions
5. Pitches
6. Scales

1. Scale Definitions
7. Loudness
8. Harmonic Contexts

1. Keys
2. Harmonies
3. Harmonic Progressions

9. Lyrics
10.Custom Contexts

4. Context Modifiers
1. Rhythmic Modifiers

1. Augmentations and Diminutions
2. Rhythmic Extensions
3. Rhythmic Adjustments
4. Rhythmic Insertions
5. Rhythmic Displacements

2. Pitch Modifiers
1. Transpositions
2. Inversions
3. Parallel Intervals

3. Harmonic Modifiers
5. Context Generators

1. Chord Generators
2. Arpeggio Generators

6. Control Structures
1. Parallelizations
2. Repetitions
3. Conditions

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

3

4. Iterations
5. Sequences
6. While-Loops
7. Switches

7. Expressions
1. Literals
2. Operators
3. Type Conversions
4. Function Calls

6. Music Transformation and Visualization
1. Rendering Context Tree Model Visualizations
2. Rendering Context Layer Model Representations
3. Visualization Options
4. Transforming Compositions to Scores

1. Score Generation Options
5. Transforming Compositions to SuperCollider

1. Executing SuperCollider Code
6. Deriving Context Tree Models
7. Launch Configurations

7. Context-sensitive Search
1. Formulating Search Queries
2. Performing Context-sensitive Search
3. Search Configuration
4. Search Result Presentation

8. Music Analysis
1. Analysis Scopes
2. Analyzing Music
3. Exploring Analysis Results
4. Configuring Music Analysis
5. Generating Analysis PDF Reports

1. Analysis Report PDF Settings
6. Generating Progression Graphs
7. Analysis Features

9. Algorithmic Composition
1. Generating Compositions
2. Algorithmic Composition Launch Configurations
3. Fitness Function Configuration
4. Creating Fitness Functions by Importing Analysis Results
5. Generating Compositions Algorithmically
6. Composition Crossover

10.Troubleshooting
1. Analysis Report Generation Fails with Fatal Error

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

4

Introduction

Music Processing Suite (MPS) is a software system for creating, visualizing, transforming,
analyzing and generating musical compositions using advanced symbolic music
representations. MPS is based on domain-specific models containing individual representations
of musical contexts such as meter, tempo, rhythms, pitches, scales, harmonies, loudness, lyrics
and more. Based on these models, the following functionality is provided:

• Composition language for intuitive, redundancy-free music modeling and notation
• Tools for creating scores and lead sheets
• Transformation infrastructure for conversions between various music representation formats

such as MIDI, MusicXML, LilyPond, PDF, CSV, SuperCollider and more
• Context-sensitive music search functionality
• Analysis infrastructure for statistical music analysis and visualization
• Algorithmic composition based on evolutionary algorithms
• Modern Eclipse-based graphical user interface

Refer to the Quickstart Tutorial for a quick introduction of the features and visit
www.musicprocessing.net for more information.

MPS runs on the Eclipse Platform. This document covers the installation of all required software
components and many usage scenarios of MPS. The documentation is structured as follows:

• Installation
• Quickstart Tutorial
• Introduction to Context Layer Models
• Introduction to the Composition Language and Context Tree Models
• Transformation and Visualization Infrastructure
• Context-sensitive Music Search
• Music Analysis
• Algorithmic Composition

This document also contains a Troubleshooting section with solutions for known issues.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

5

https://www.musicprocessing.net
https://www.eclipse.org/

Installation

This chapter contains instructions on how Music Processing Suite (MPS) and optional additional
applications are installed.

Overview

MPS runs on the Eclipse platform, which requires a Java runtime environment. In order to use
basic features of MPS, only Java and the stand-alone MPS application (which includes Eclipse)
are required. Depending on your applications and use cases, additional external applications
can be utilized by MPS for enhanced results and additional output formats.

Requirements

Music Processing Suite runs on Windows, Linux and Mac OS X. To run MPS, a Java Runtime
Environment (JRE) or Java Development Kit (JDK) is required in version 17 or higher.

Quick Installation Guide

The following instructions help you to set up MPS as quickly as possible. Please refer to the
detailed instructions below if any of the instructions are unclear.

Required software:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

6

• Download a Java JDK (at least Java 17) from here and install it
• Download MPS here and extract it

The following instructions are for Mac users only:

• Move MPS.app to your Applications folder.
• Open a terminal (search for Terminal in spotlight).
• Copy the following command into the terminal and hit enter: sudo xattr -rd
com.apple.quarantine /Applications/MPS.app

• Enter your Mac user password (it will not be displayed for security reasons) and hit enter
• You should now be able to start MPS.app like every other Mac application

Depending on what you want to do with MPS, you might consider installing the following
additional applications:

• If you want to compose music using the MPS composition language and generate scores
and/or MIDI files for your compositions, install either LilyPond or MuseScore:
• Download LilyPond from lilypond.org, install it and configure the installation path under

Preferences → LilyPond → Compiler
• Download MuseScore from musescore.org and install it

• If you want to generate graphs of composition models or musical analysis results, download
GraphViz from graphviz.org and install it. Note for Mac users: native installation packages
might not be available, but it is possible to install GraphViz via MacPorts or Homebrew.

• If you want to generate PDF reports containing musical analysis results, charts, diagrams
and tables, download LaTeX from latex-project.org and install it

• If you want to perform sentiment analysis of lyrics using Stanford CoreNLP, download it from
stanfordnlp.github.io and extract it to a directory of your choice. Configure the directory path
under Preferences → Music Processing Suite → Analysis → Sentiment Analysis.

Java Installation

Recommended Java distributions compatible with MPS can be downloaded from Azul. These
are open source Java distributions which have less license restrictions than the Java packages
provided by Oracle. Download and install a JDK for your operating system. The minimum
version is Java 17.

How to Check if Java is Installed

If you don’t know whether Java is already installed or which version is installed, open a terminal/
command line on your operating system and enter

java -version

and hit enter. If java is installed, the first line of the output shows the Java version. For example,
this is the first output line for a Java 17 JDK of the Zulu distribution:

openjdk version "17.0.3" 2022-04-19 LTS

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

7

https://www.azul.com/downloads/?package=jdk#download-openjdk
https://www.musicprocessing.net/download/
http://lilypond.org/
https://musescore.org/download
https://graphviz.org/download/
https://www.latex-project.org/get/
https://stanfordnlp.github.io/CoreNLP/download.html
https://www.azul.com/downloads/?package=jdk#download-openjdk

Music Processing Suite Installation

Music Processing Suite can be installed as stand-alone software or into an existing Eclipse
installation. If you install MPS for the first time or are not sure what to do, go for the stand-alone
installation. If you are already familiar with Eclipse and have a recent version installed, you can
consider installing MPS into your existing Eclipse instance.

Stand-alone Installation

Stand-alone versions of MPS can be downloaded at www.musicprocessing.net. Download
the appropriate version for your operating system and processor architecture. Unpack the
downloaded archive file and start MPS by starting the respective executable file (MPS.exe for
Windows, MPS for Linux and MPS.app for Mac).

Important note for Mac users: If you have trouble running MPS on Mac because of security
issues or OS X says the app is „damaged”, execute the following command in a terminal (to
open a terminal, simply search for Terminal in spotlight) to unlock the MPS application:

sudo xattr -rd com.apple.quarantine /Applications/MPS.app

Refer to this post for more details.

Installation Into an Existing Eclipse Instance via Update Site

Please skip this section if you already installed the stand-alone version in the previous step. If
you already have a version of Eclipse installed, the MPS plugins can installed into your existing
Eclipse installation. In your existing Eclipse instance, navigate to Help → Install New Software
and enter the following update site URL:

https://updates.musicprocessing.net/

Select the Music Processing Suite Feature and click through the installation wizard. After the
installation, Eclipse will be restarted and MPS will be ready to use.

Optional Components

The following software components are optional and are used for the following purposes:

• LilyPond and/or MuseScore to generate musical scores, lead sheets and MIDI files
• Graphviz for visualizing composition models and graph-based music analysis results
• LaTeX for generating PDF reports containing musical analysis results, charts, diagrams and

tables
• CoreNLP for advanced sentiment analysis of lyrics

LilyPond Installation

Download LilyPond for your operating system from lilypond.org and install as described on the
website.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

8

https://www.musicprocessing.net
https://www.musicprocessing.net/starting-mps-on-mac-os-x-catalina/
http://lilypond.org/

LilyPond Configuration

To connect LilyPond to MPS, follow these steps:

1. Open the MPS Preferences
1. On Windows and Linux: In the menu bar, choose Window → Preferences
2. On Mac: In the menu bar, choose Music Processing Suite (application menu) →

Preferences
2. Navigate to LilyPond → Compiler
3. Choose the location of the lilypond executable, e.g. /Applications/LilyPond.app/
Contents/Resources/bin/lilypond.

MuseScore Installation

Download MuseScore for your operating system from musescore.org and install as described
on the website.

MuseScore Configuration

MPS will automatically search for MuseScore in the following locations depending on your
operating system:
Operating System Default Search Paths Executable Names

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

9

https://musescore.org/download

Linux /usr/local/bin
/usr/
bin

mscore3<br/
>musescore3
mscore

Mac OS X /Applications/MuseScore
3.app
/usr/local/
bin
/usr/bin

mscore
mscore3<br/
>musescore3

Windows C:\Program*\MuseScore* MuseScore3.exe

If MuseScore cannot be located automatically or if you have installed MuseScore elsewhere, the
path can be configured as follows:

1. Open the MPS Preferences
1. On Windows and Linux: In the menu bar, choose Window → Preferences
2. On Mac: In the menu bar, choose Music Processing Suite (application menu) →

Preferences
2. Navigate to Music Processing Suite → Score Generation
3. Choose the location of the MuseScore installation, e.g. /Applications/MuseScore
3.app

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

10

Graphviz Installation

GraphViz is required if you want to visualize composition models in the form of context trees
and/or display graph-based music analysis results.
The application can be downloaded from graphviz.org.

Optionally, install the program graphviz-gui if you require an additional viewer to display
.dot files directly. You don’t need graphviz-gui if you are comfortable with displaying
composition models using an PDF viewer.

Note for Mac users: native installation packages might not be available, but it is possible to
install GraphViz via MacPorts or Homebrew. The following commands can be entered into a
terminal to install Homebrew and GraphViz:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/HEAD/install.sh)"

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

11

https://graphviz.org/download/

brew install graphviz

Graphviz Configuration

MPS will automatically search for GraphViz in the following locations depending on your
operating system:
Operating System Default Search Paths Executable Name

Linux /usr/local/bin
/usr/
bin

dot

Mac OS X /opt/local/bin
/usr/
local/bin
/usr/bin

dot

Windows C:\Program*\Graphviz*
\bin

dot.exe

If GraphViz cannot be located automatically or if you have installed GraphViz elsewhere, the
path can be configured as follows:

1. Open the MPS Preferences
1. On Windows and Linux: In the menu bar, choose Window → Preferences
2. On Mac: In the menu bar, choose Music Processing Suite (application menu) →

Preferences
2. Navigate to Music Processing Suite → Visualization
3. Choose the directory containing the Graphviz dot executable, e.g. /opt/local/bin.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

12

LaTeX Installation

LaTeX is only required if you intend to analyze music with MPS and want to export statistical
analysis results and graphs in the form of PDF reports. Visit latex-project.org to get a LaTeX
distribution for your operating system. Refer to the following table for recommendations for your
operating system.
Operating System Recommended Distribution Remarks

Windows MiKTeX It is recommended to enable
the feature to install missing
packages on-the-fly.

Linux TeX Live Custom LaTeX packages
might be available for your
specific Linux distribution.

Mac OS X BasicTeX BasicTeX is a minimal and
small TeX distribution (about
80 MB), compared to the full
MacTeX distribution which is
over 4 GB.

Make sure that the following packages are installed in your LaTeX system using the TeX Live
Utility. The following packages have to be installed manually when using a BasicTeX distribution
on Mac OS X:

pgfplots
collcell
adjustbox
collectbox

When using BasicTeX on Mac OS X, download the TeX Live Utility here. Save it in your
Applications folder and open it (if Mac OS X complains about security issues, right-click and
open it or allow access in the security section of your system preferences). Possibly an update
will be performed after the first start.

Once the tool is opened, switch to the Packages tab. Then enter packages to be installed in
the search field on the top right. Right-click on the package and choose Install to perform the
installation. Repeat this step for all packages listed above.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

13

https://www.latex-project.org/get/
https://miktex.org/
http://www.tug.org/texlive/
http://www.tug.org/mactex/morepackages.html
http://www.tug.org/mactex/mactex-download.html
http://amaxwell.github.io/tlutility/
http://amaxwell.github.io/tlutility/
http://www.tug.org/mactex/morepackages.html
http://amaxwell.github.io/tlutility/

LaTeX Configuration

MPS will automatically search for LaTeX in the following locations depending on your operating
system:
Operating System Default Search Paths Executable Name

Linux /usr/local/texlive
/
usr/share/texlive
/
usr/local/bin
/usr/
bin

lualatex

Mac OS X /usr/local/texlive
/
usr/share/texlive
/
opt/local/bin
/usr/
local/bin
/usr/bin

lualatex

Windows C:\Program*\MiKTeX* lualatex.exe

If LaTeX cannot be located automatically or if you have installed LaTeX elsewhere, the path can
be configured as follows:

1. Open the MPS Preferences
1. On Windows and Linux: In the menu bar, choose Window → Preferences
2. On Mac: In the menu bar, choose Music Processing Suite (application menu) →

Preferences
2. Go to Music Processing Suite → Analysis → PDF Reports
3. Choose the location of the directory containing the LaTeX executables, e.g. /usr/local/
texlive/2020basic/bin/x86_64-darwin.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

14

CoreNLP Installation

CoreNLP is an advanced natural language processing framework developed by the Stanford
NLP group. If a CoreNLP server is installed and running, it can be utilized by MPS for the
analysis of sentiment polarities in lyrics.

To install CoreNLP, download it from stanfordnlp.github.io and extract it to a directory of your
choice.

CoreNLP Configuration

MPS will automatically search for CoreNLP in the following locations depending on your
operating system:
Operating System Default Search Paths JAR File Name

Linux /opt/stanford-corenlp-* stanford-corenlp-*.jar

Mac OS X /Applications/stanford-
corenlp-*

stanford-corenlp-*.jar

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

15

https://stanfordnlp.github.io/CoreNLP/download.html

Windows C:\Program*\stanford-
corenlp-*

stanford-corenlp-*.jar

If LaTeX cannot be located automatically or if you have installed LaTeX elsewhere, the path can
be configured as follows:

1. Open the MPS Preferences
1. On Windows and Linux: In the menu bar, choose Window → Preferences
2. On Mac: In the menu bar, choose Music Processing Suite (application menu) →

Preferences
2. Go to Music Processing Suite → Analysis → Sentiment Analysis
3. Select CoreNLP as sentiment analysis framework
4. Choose the location of the directory containing CoreNLP, e.g. /Applications/stanford-
corenlp-4.2.0.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

16

Quickstart Tutorial

This chapter provides a quick tutorial to become acquainted with the most important features of
MPS. Refer to the remaining chapters for more detailed descriptions and explanations.

Creating Projects

Click the button

to open a menu for creating new projects and files:

Choose Music Processing Project to create a new project configured for MPS and enter a name
for your project. Click Finish to complete the project creation.

Creating Compositions

To create a new composition, right-click on a project or folder and choose New → Composition.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

17

Alternatively, the menu introduced in the previous section can be used, which can be accessed
using the button

.
The following wizard is opened:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

18

Enter the file name and optionally provide a title and the composer name. Click Finish to
create your first composition. The composition editor will open in the center of the application,
containing the specified metadata and an empty composition tree. Add the following code to
add some musical content:

composition
{
 time 2/4, key Cm
 {
 rhythm _8 8 8 8 2
 {
 pitches 4 4 4 2
 pitches 3 3 3 1, rhythmicExtension 2
 }
 }
}

Visualizing Context Tree Composition Models

To view a graphical representation of the composition model, click the button

to render a tree graph using GraphViz. Note that GraphViz must be installed in configured to
use this feature as described in the Installation chapter. The following graph results:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

19

http://www.graphviz.org/
http://www.graphviz.org/

Visualizing Context Layer Composition Models

For a time-based representation of the resulting musical context layers,
so called context layer models can be generated. Click on the button

to create an SVG file containing the layer model. The file will be opened with the default

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

20

application registered in your operating system to open scalable vector graphics files, e.g. a web
browser. The corresponding context layer model looks like this:

Meter (5) 2/4 time 2/4 time 2/4 time 2/4 time 2/4 time

Key (1) Cm

Harmony (1) Cm

Harmonic Rhythm (2) 1 1.

Rhythm (10) _8 8 8 8 2 _8 8 8 8 1

Scale (1) minor

Degrees (10) 4 4 4 2 3 3 3 1

Pitches (10) G4 G4 G4 Eb4 F4 F4 F4 D4

Loudness (1) loudness mf

St
re

am
 1

Time (Measures) 1 2 3 4 5

Time (Absolute) 0 1 2

Creating Scores and Lead Sheets

To create a score representation of a composition, click the button

in the toolbar. If the score is created for the first time, a dialog with score generation options will
be shown. After configuring the score options, click Apply and then Run.

MPS will compile a LilyPond file of the piece. The Elysium Eclipse plug-in will take care of
compiling this file to a corresponding PDF and MIDI file. Note that LilyPond must be installed to
use this feature as described in section LilyPond Installation.

The score resulting from the example looks like this:

Options to configure the score generation process are documented here.

Analyzing Compositions

To perform musical analyses, select a file or folder to analyze and click the button

in the toolbar. If a file or folder is analyzed for the first time, a dialog with several analysis
options opens. Either leave the configuration as it is or make adjustments as required, then click
Apply and Run.

A new folder containing analysis results will be created next to the selected input resource. A
number of CSV files and DOT graph files will be created in that folder. To explore and visualize
the results, MPS provides a dedicated view, which can be opened by right-clicking the created
analysis folder and selecting Open Analysis View:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

21

http://lilypond.org/
https://marketplace.eclipse.org/content/elysium
http://lilypond.org/

The view is populated with data whenever a folder containing analysis results is selected.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

22

To create a nice PDF report visualizing the data, select the analysis output folder and click the
button

in the toolbar. This will create a LaTeX file which will be compiled to a PDF file if a LaTeX
environment is installed and configured as explained in section LaTeX Installation. The PDF
file will contain statistical plots, diagrams and progression graphs. For a harmonic progression
graph example, refer to section Analysis.

Options for analysis report generation are available here:

1. Open the MPS Preferences
1. On Windows and Linux: In the menu bar, choose Window → Preferences
2. On Mac: In the menu bar, choose Music Processing Suite (application menu) →

Preferences
2. Go to Music Processing Suite → Analysis Reports

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

23

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

24

Context Layer Models

Most computer systems processing music data operate on sequential, time-based models
that describe music as (one or multiple) sequences of notes and rests. This seems to be an
adequate representation considering that the common form of music notation are scores, which
primarily contain sequences of notes, rests and instructions how these are to be played. While
sequential representations are suitable for many computer-aided music processing scenarios
and also convenient for performing musicians, these are not sufficient for describing all aspects
and relations of a musical composition from a composer’s point of view.

Introductory Example

The following example demonstrates a model of the first four measures of the well-known
Beatles song Hey Jude. The vocal part looks like this:

The corresponding context layer model is depicted below:

Model Structure

Context layer models contain one or multiple streams which are comparable to voices or parts
in scores. Each staff in a score is represented by at least one stream. A single part is divided
into multiple streams if it in turn contains multiple voices (e.g. a fugue in four voices might be
notated in two piano staves, however the context layer model representation will contain four
streams).

Streams contain individual layers for various musical context dimensions, which are explained
in the following sections. The layers in turn contain time-dependent context elements, each of
which have a start time and a duration. Technical details of time representation are set out in
section Time Model.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

25

Instrumentation Context

The instrument layer specifies which instrument is used at which point of time in a stream. In the
context layer model in the previous example, this context never changes and indicates a vocal
part.

Metric Contexts

The meter layer provides the metric context of a musical stream. It contains time signatures, the
start time and duration of which correspond to measures. Note that pieces may commence with
an anacrusis (also known as pickup or upbeat) which implies a shortened initial measure. The
measure numbers are shown in a timeline at the bottom of the context layer model visualization.

The current tempo is determined by an individual context layer. It usually contains elements
specifying a constant tempo, as shown in the previous example. However, the tempo layer also
supports gradual tempo changes to model accelerando and decelerando.

Harmonic Contexts

The current key context of streams is given by a correspondent context layer, which can change
in the course of the composition.

Another harmonic context is given by context harmonies, which usually change more frequently
than the key. In the previous example the key remains constant, while the context harmonies
change in each measure.

Rhythmic Contexts

Rhythm is one of the most crucial dimensions of music. This is also reflected in context layer
models: rhythm context layers are obligatory for each stream. The rhythmic dimension defines
the durations and proportions of the notes or sound events produced by the stream.

Another rhythmic dimension is the harmonic rhythm, which specifies the durational proportions
of context harmonies.

Pitch Contexts

The context layer model in the previous example also contains context layers regarding pitches,
namely Scale, Degrees and Pitches.

Often pitches are derived from a contextually suitable scale, on which pitches can be addressed
using scale degrees. In the example, pitches are derived from the F major scale (which in turn
matches the key context) using zero-based scale degrees. For example, the degree 0 will
resolve to F, 1 to G, 2 to A, 3 to Bb and so on.

The resulting absolute note names (including the octave) are visible in the Pitches context
layer. If no octave is specified, the middle octave, which is encoded as octave with number 4
according to scientific pitch notation, is implied (see section Pitches for more details).

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

26

Loudness Contexts

Another musical context layer represents the progress of loudness throughout musical streams.
It contains elements with static loudness instructions such as piano or forte. Gradual loudness
progressions are also supported to model crescendo and decrescendo.

Another loudness-related context layer, which is not covered in the previous example,
accommodates dynamic accents such as sforzando (notated as sfz, sf or fz), sforzando followed
immediately by piano (sfp), rinforzando (rfz) or fortepiano, forte followed immediately by piano
(fp).

Lyrics

Vocal streams can contain lyrics as an individual context. Using this layer, syllables can be
assigned to individual notes as shown in the previous example.

Labels

Another context can be supplied in the form of labels for individuals parts of a composition.
These could be, for example: Verse, Chorus, Bridge, Solo for popular music, or Exposition,
Development and Recapitulation for a piece based on a sonata form.

Custom Contexts

MPS provides a number of default context layer types, most of which have been discussed in
the previous sections. Yet, the number of layers is not fixed and the model was designed to be
extensible in order to accommodate new context layers. For example, new context dimensions
for fingering instructions, the spatial position of a musical stream or the emotional character of
certain sections could be added. Refer to section Custom Contexts for detailed instructions on
how to add custom context layers.

Time Model

Each context layer model has an internal timeline which by definition starts at t=0 at the
beginning of the first full measure. The earliest point of time can become negative in the case
of anacruses at the beginning of the piece, as shown in the previous example, which starts at
t=-1/4 due to the upbeat.

Because the accuracy of floating point numbers is not sufficient for representing decimal
fractions in all cases, MPS uses fractions (which internally store an integer numerator and
denominator separately) for all points of time and durations.

Parallel Streams

To demonstrate the combination of multiple parts, a context layer model of the first four
measures of Ludwig van Beethoven’s Piano Sonata No. 14 in C# minor is presented. Compare
the original score with the context layer model depicted below:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

27

The model contains two streams, namely one for the arpeggios in the right hand and an
individual stream for the arpeggio-based accompaniment of the left hand. Note that both
streams contain the same information on instrument, meter, tempo key, harmony, harmonic
rhythm, scale and loudness layers. However, the streams contain individual rhythm, degree and
pitch layers.

The fact that streams can either share common information or specify individual information
can be utilized to represent arbitrary musical constellations between the streams. For example,
for multi-tonal compositions concurrent streams could contain different harmonic and tonal
contexts. For compositions which do not rely on tonality, all context layers relating to tonality
can be removed. In this way, the proposed model is suitable for the representation of a number
of musical concepts and constellations, which can not in all cases be made visible in musical
scores.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

28

Composition Language and Context Tree Models

The composition model in MPS represents musical pieces by means of a tree-based structure
containing musical context information. Besides musical contexts, the model contains so called
context modifiers, context generators and control structures. All aforementioned elements are
explained in the following sections.

The model was developed in conjunction with a comprehensible domain-specific composition
language, in which music can easily be notated. It is demonstrated in the following sections,
how the composition language can be used to create composition models. The models can later
be transformed to scores, lead sheets and a number of other representations, as explained in
chapter Music Transformation and Visualization.

Introductory Example

As a first example, a model of Ludwig van Beethoven’s world-famous Symphony No. 5 in C
Minor Op. 67 motif is presented. The score looks like this:

Consider the correspondent context model:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

29

Each composition model defines a root node labeled composition. It contains a tree of
context objects. In the previously shown model, the key of the composition (namely C minor)
is defined by means of a key context. Below that, a metric context (a 2/4 time signature)
is defined. On the next layer, a rhythm is specified representing the famous rhythm of the
motif, namely an eighth rest followed by three eighth notes and a half note. The syntax used
to describe this rhythm is part of the composition language, which is also introduced in this
chapter. Refer to section Rhythms for more details.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

30

The pitches to be played are specified in terms of zero-based degrees on the minor scale,
meaning that the number 0 represents the root note C, 1 the note D, 2 the note Eb and so on.
Note that the context tree diverges below the scale node into two separate branches. This
is interpreted as follows: First, all contexts between the composition and the scale node
are combined with the left branch (namely the node pitches 4 4 4 2), and sequentially
combined with the right branch (namely the node pitches 3 3 3 1 and the rhythmic
extension).

Note that both combined context sets contain the same rhythm, but different pitches. This is
a pattern which is very frequently used in musical compositions: the same musical context (in
this case a rhythm) is combined with a set of other musical contexts of another type (in this
case pitches). The left branch effectively represents the first two measures of the composition.
In this case, the pitches evaluate three times to G and once to Eb. In the right branch, which
represents the rest of the motif, the pitches evaluate three times to F and once to D. The D,
however, is rhythmically different from the Eb in the second measure, for its duration is two half
notes instead of only one. This is only a minor modification compared to the original rhythm. In
the composition model, it is not required to define a new rhythm. Instead, only the modification
of the current rhythm must be specified, which is done with a so called context modifier named
rhythmic extension, which doubles the duration of the last half note.

The context model can also be represented in terms of a simple text file in the corresponding
domain-specific language. Compare the following syntactical representation with the previously
introduced graphical model.

composition
{
 time 2/4, key Cm
 {
 rhythm _8 8 8 8 2
 {
 scale minor
 {
 pitches 4 4 4 2
 pitches 3 3 3 1
 {
 rhythmicExtension duration 2
 }
 }
 }
 }
}

Key Concepts

The preceding example demonstrates a few key aspects of the model:

• Compositions can be expressed as combinations of musical aspects or contexts in various
constellations.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

31

• These contexts can be represented in form of a tree. When combining different tree branches
sequentially, the tree can be interpreted as a musical composition.

• The tree structure is suitable for representing music in a compact form avoiding redundant
information. In the example, the rhythm context is used twice but must be specified only
once.

• If a musical structure (such as a rhythm) is modified in the course of a composition, the
modification process can be specified rather than defining a new rhythm instance.

These concepts, among other mechanisms, are further elaborated in the following sections.

Hierarchical Structures

Musical compositions are usually to some extent organized and perceived in hierarchically
arranged units. Compositions can generally have multiple hierarchical levels of organization.

The hierarchical nature of context tree models is used for multiple purposes:

• Utilizing hierarchical structures is useful for logical and graphical grouping and for
improving the clarity and readability of musical context tree models. The number of hierarchy
levels in MPS context models is not limited, which allows to model musical context trees with
arbitrary complexity.

• The hierarchy level of contexts in the tree models is also used to express the scope of the
corresponding contexts. Generally, the higher a context is located in the tree, the more global
is its impact on the musical composition.

• Furthermore, hierarchical relations between individual contexts can be modeled. For
example, pitches can be put in a local harmonic context such as a chord or harmony, which
in turn can be related to a local and/or global key.

Inheritance

A very effective way to avoid redundant information is to harness a technique commonly used
in object-oriented software development called inheritance. It involves defining hierarchical
dependencies between object types in order to utilize already existing properties and/or
functionality from another object type.

In MPS, the principle of inheritance is applied to musical context tree models. This is illustrated
using a musical example. Consider the following score of the beginning of Queen’s Bohemian
Rhapsody:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

32

The score contains a some redundant information. For example, the parts are arranged
homorhythmically, i.e. the rhythms of all four parts are exactly identical except for the end of
the third measure. Also, the lyrics for all parts are exactly identical. In traditional scores, the
composer or arranger has no other choice but to write the same rhythms and syllables all over
again. In MPS context tree models however, the rhythm and the lyrics have to be specified
only once and can be reused using various techniques. One of these techniques is inheritance,
which is demonstrated in the following context tree model representing the first two measures of
the piece:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

33

The inheritance hierarchy is made visible by arrows and by the positions of the context nodes.
Arrows are interpreted as „all inherited contexts are passed on to the node in direction of the
arrow”. Inheriting nodes will normally drawn on the next hierarchy level which implies a lower
position in the graph visualization. In this way, the instrument (vocals), the key (B flat major),
the rhythm, the context harmony (G minor seventh), and the lyrics („Is this the real life?”)
are aggregated and passed on to the left parallelization node. It has four child nodes,
which produce the four individual vocal parts of the first measure. They have different pitches,
but have all the previously enumerated contexts in common. Using inheritance, all common
contexts have to be specified only once, which is a major advantage of context tree models.

The same technique is used in the second measure, which inherits common instrument, key,
base rhythm, context harmony and lyrics contexts. Note that further optimization methods are
used in the model, which are explained in the following sections.

Polymorphism

Another model concept inspired by object-oriented programming is polymorphism, which allows
to override (and also to extend) particular parts of inherited functionality. In context tree models,

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

34

this concept can be used to overwrite contextual information. To elaborate, another context
tree model of Bohemian Rhapsody is shown in the following model, this time containing context
information of the first four measures of the piece.

The time signature change in the third measure is modeled using a polymorphic construction. In
the model, the 5/4 time signature context is positioned on a lower hierarchy level than the 4/4
time context at the top of the tree. The metric context 5/4 effectively overrides the 4/4 context
temporarily (namely for one measure). After the subtree of the 5/4 measure is processed,
the main 4/4 time signature becomes operative again. This technique can be applied to
any musical context. For instance, temporary changes regarding meter, tempo, instruments,
rhythms, pitches and harmonic contexts can be modeled.

Note that this representation has additional value compared to a purely sequential
representation. In the context tree model, it is directly visible that the 4/4 meter is of higher
importance in the composition than the 5/4 meter. In fact, it becomes apparent that the 5/4
meter is only used in terms of a temporary „excursus” from the standard meter of the piece and
is used in a subsidiary manner.

Auto Expansion

When combining contexts defining musical sequences (e.g. rhythms, pitches or lyric syllables),
these sequences do not necessarily need to have the same length. If the number of available
rhythm notes, pitches and syllables does not match, the system will automatically apply a
so called auto expansion. The consequence is that shorter sequences will automatically be
repeated until the longest sequence is consumed completely. Consider the following example:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

35

It results in the following score:

The language representation looks like this:

composition
{
 instrument vocals, time 6/8, key D
 {
 rhythm 4.
 {
 pitches(startOctave 5) 2
 {
 lyrics "Freu-de"
 }
 pitches(startOctave 5) 3 4 4 3 2 1 0 0 1 2
 {
 lyrics "schö-ner Göt-ter-fun-ken, Toch-ter aus E-"
 }

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

36

 }
 rhythm 5/8 8 4 _8 _4.
 {
 pitches(startOctave 5) 2 1 1
 {
 lyrics "ly-si-um"
 }
 }
 }
}

In the previous example, musical sequences of different lengths are combined. In particular,
in the leftmost subtree combines the rhythm 4. (i.e. a dotted quarter note) with a pitch on the
third scale degree (zero-based, i.e. 2) and the two lyric syllables Freu-de. While the rhythm
and the pitch sequence only contain one element, the lyric sequence contains two syllables.
The system automatically wraps and repeats the rhythm and the pitches until both syllables are
processed. In sum, this results in two dotted quarter notes, both with the same pitch, but with
different syllables.

Auto expansion was also used in the previous Bohemian Rhapsody example, in which the
rhythm _8 8 8 8 4 4 is combined with the lyrics „Is this the real life?” and multiple pitch
contexts for individual parts, namely pitches 2, pitches 0, pitches -1 and pitches
-3. The rhythm contains six rhythmic notes, the first of which is a rest, leaving five assignable
notes for syllables and pitches. The lyrics contain exactly five matching syllables. The pitch
contexts, however, contain only one pitch each. Therefore, the pitches are repeated until the
rhythm and the lyrics are consumed completely.

Using auto expansion, redundant musical sequences can be represented in an effective way,
providing yet a useful compression method for context tree models.

Modularization using Fragments

Another technique to avoid redundant information in context tree models is modularization. To
this means, arbitrary subtrees can be extracted into so called fragments. These are named
subtrees which can be referenced from other places in the model. If subtrees occur multiple
times in a model, they only have to be defined once in a fragment in order to be referenced at
any place they are required.

As an example, consider the English horn theme of Antonin Dvorak’s Symphony No. 9 in E
minor, „From the New World”, Op. 95, B. 178:

One possible context model for this score looks like this:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

37

However, this model can be further optimized, as it contains some redundant information.
Compare measures 1 and 3, which are exactly identical. The corresponding subtrees, i.e. the
subtrees originating at the rhythms 8. 16 4, can be extracted to a fragment and referenced
twice:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

38

Contexts

Rhythms

Rhythm is one of the most central aspects in music. In the composition model, rhythms are
represented as an individual context dimension and can be expressed using the corresponding
domain-specific language. The syntax is very simple, yet powerful. Consider the following
example:

rhythm _8 8 8 8 2

It yields the motif rhythm of Beethoven’s famous Symphony No. 5 in C Minor, Op. 67:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

39

Of course, more complex rhythms can be defined using the language. Refer to the following
table for a detailed explanation of note and rest duration syntax variants.
Syntax Example Result Description

n (Integer Literal) 2 4 8 16 Integer literals
are interpreted as
reciprocal duration,
e.g. 4 represents a
quarter note, 8 an
eighth note etc.

_ (Underscore Prefix) _2 _4 _8 _16 Prefix to indicate that
the following duration
is to be interpreted as
a rest duration.

n! (Integer Literal with
! Suffix)

2! Integer literals
followed by an
exclamation mark are
not interpreted as
reciprocal duration but
as literal duration, e.g.
2! specifies a duration
of two whole notes.

. (Dot Suffix) 8. 16 8.. 32 Dots are used as
suffixes to extend the
preceding note or rest
duration with a factor
of 1.5. Multiple dots
can be used in a row.

n/m (Fraction with
Integer Numerator and
Denominator)

5/4 Fractional note or rest
duration, normally
used if the duration
can not be expressed
as a canonical duration
using simple fractions
of two and dots.

~ (Tilde Suffix) 1~ 4 Suffix used to indicate
that the current note is
rhythmically tied to the
following note.

(n/m:
<durations>)
(Tuplet)

(3/2: 8 8 8) Specifies a tuplet in
which n notes are
played in the original

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

40

duration of m notes.
The adjacent example
produces an eighth
triplet. To compute the
resulting durations,
the original durations
have to be multiplied
with the fraction m/n.
For example, in the
case of the triplet, the
note durations are
multiplied with 2/3,
yielding durations of
1/8 * 2/3 = 1/12
for each of the eighth
triplet notes.

Examples
Syntax Resulting Rhythm Description

_8 8 8 8 2 Ludwig van Beethoven,
Symphony No. 5 in C Minor
Op. 67, Motif Rhythm

4. 8 8 8 _4 George Frideric Handel,
Hallelujah Chorus from
Messiah, HWV 56, Motif
Rhythm

2 4 4 4. 16 16 4 _4 Wolfgang Amadeus Mozart,
Piano Sonata No. 16 in C
major, K. 545, Opening Theme
Rhythm

8 8 8 _8 8 8 _8 8 _8 8
8 _8

Steve Reich, Clapping Music,
Rhythmic Motif

_8 8 8 8 8. 32 32 8 8 8
8~ 16 16 16 16 16

J. S. Bach, Fugue in C Major,
BWV 846, Subject

4 _8 (3/2: 16 16 16) 4
_8 (3/2: 16 16 16) 4

Wolfgang Amadeus Mozart,
Symphony No. 41 in C major,
K. 551, Opening Theme
Rhythm

Anacruses

Some musical phrases do not start directly on a metrically strong beat, but are preceded by one
or more notes, which are referred to as anacrusis, also known as pickup or upbeat. Often this
happens at the very beginning of a piece, yet also phrases in the middle of compositions can be
initiated using pickup beats.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

41

To indicate anacruses in MPS, the pickup beats simply are enclosed in parentheses. For
example, the following code specifies a rhythm with an eighth note pickup beat:

rhythm (8) 8 8 8 16 16 4. _8

Consider the following model of Vivaldi’s Concerto No. 1 in E major, Op. 8, RV 269 known
as Spring from the Four Seasons, in which anacruses at the beginning and in the middle of a
phrase are specified.

The equivalent syntactic representation of the model is:

composition
{
 key E
 {
 rhythm (8) 8 8 8 16 16 4. _8
 {
 pitches 7 9 9 9 8 7 11
 }
 rhythm (16 16) 8 8 8 16 16 4. _8
 {
 pitches 11 10 9 9 9 8 7 11
 }
 }
}

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

42

The result of this model is the following score (with anacruses at the beginning and before the
second full measure marked in red):

Time Signatures

Time signatures are defined using the time keyword in combination with a fraction, for
example:

time 3/4

Depending on the metric context, the very same rhythm can have different musical meanings.
This is illustrated in the following example:

The corresponding source code looks like this:

composition
{
 instrument snare
 {

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

43

 rhythm 4. 8 4
 {
 time 3/4
 time 6/8
 }
 }
}

When compiling the model, the following score results:

It demonstrates that the very same rhythm can have different musical meanings depending on
the metric context.

Tempo

Tempo is an individual context dimension which can be changed independently from time
signatures. The tempo is specified in beats per minute (BPM). Example:

tempo 100

By default, the BPM specification defines the temporal distance of quarter notes. It is also
possible to define other note durations to which the BPM specification relates. To specify the
tempo for eighth notes, for example, the following syntax is used:

tempo 80 noteDuration 8

The note duration syntax is the same as described in section Rhythms.

It is also possible to define gradual tempo changes, as demonstrated in the following example:

tempo 80 -> 110 noteDuration 8

Instruments

The instrument context defines by which instrument the musical material in the respective
part of the model is played. Syntactically, this context is defined by the instrument keyword
followed by an instrument identifier, such as:

instrument guitar

Refer to the following section Available Instruments for a complete list of predefined
instruments.

The following context model represents an excerpt of the famous Boléro by Maurice Ravel, in
which a part of the melody is sequentially played by the flute and the clarinet:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

44

Syntactically, this can be expressed as:

composition
{
 time 3/4
 {
 instrument flute
 {
 fragmentRef melody
 }
 instrument clarinet
 {
 fragmentRef melody
 }
 }
}

fragment melody
{
 rhythm 4. 16 16 16 16 16 16, pitches 7 6 7 8 7 6 5
 rhythm 8 16 16 4. 16 16, pitches 7 7 5 7 6 7
 rhythm 16 16 16 16 9/16, pitches 5 4 2 3 4
 rhythm 16 16 16 16 16 16 16 4, pitches 3 2 1 2 3 4 5 4
}

The score looks like this. Note that the clarinet is notated in B flat.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

45

For a version of this model in which the melody is played simultaneously, refer to section
Parallelizations.

Available Instruments

The MPS library contains a number of predefined instruments, which are listed and described in
the following sections.

Instruments with Variable Pitches

The following instruments are generally playable in different pitches depending on their
compass.
Identifier Name Description

accordion Accordion

acousticBass Acoustic Bass Transposing Instrument:
Sounds one octave lower than
notated, using bass clef for
notation by default

acousticGuitar Acoustic Guitar Transposing Instrument:
Sounds one octave higher
than notated

acousticSteelGuitar Acoustic Steel Guitar Transposing Instrument:
Sounds one octave higher
than notated

altoSax Alto Saxophone

altoSaxInEb Alto Saxophone in Eb Transposing Instrument:
Sounds a major sixth lower
than notated

banjo Banjo

bass Bass Guitar Transposing Instrument:
Sounds one octave lower than

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

46

notated, using bass clef for
notation by default

bassClarinet Bass Clarinet

bassClarinetInBb Bass Clarinet in Bb Transposing Instrument:
Sounds a major ninth lower
than notated

bassoon Bassoon

bassPicked Picked Bass Guitar Transposing Instrument:
Sounds one octave lower than
notated, using bass clef for
notation by default

baritoneSax Baritone Saxophone

baritoneSaxInEb Baritone Saxophone in Eb Transposing Instrument:
Sounds a major thirteenth
lower than notated

celesta Celesta Transposing Instrument:
Sounds one octave higher
than notated

cello Cello

clarinet Clarinet

clarinetInA Clarinet in A Transposing Instrument:
Sounds a minor third lower
than notated

clarinetInBb Clarinet in Bb Transposing Instrument:
Sounds a major second lower
than notated

clarinetInEb Clarinet in Eb Transposing Instrument:
Sounds a minor third higher
than notated

contrabassoon Contrabassoon Transposing Instrument:
Sounds one octave lower than
notated, using bass clef for
notation by default

doubleBass Double Bass Transposing Instrument:
Sounds one octave lower than
notated, using bass clef for
notation by default

drawbarOrgan Drawbar Organ

electricGuitar Electric Guitar Transposing Instrument:
Sounds one octave higher
than notated

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

47

electricGuitarDistorted Distorted Electric Guitar Transposing Instrument:
Sounds one octave higher
than notated

electricGuitarJazz Electric Jazz Guitar Transposing Instrument:
Sounds one octave higher
than notated

electricGuitarMuted Muted Electric Guitar Transposing Instrument:
Sounds one octave higher
than notated

electricGuitarOverdrivenOverdriven Electric Guitar Transposing Instrument:
Sounds one octave higher
than notated

electricPiano Electric Piano

englishHorn English Horn

englishHornInF English Horn in F Transposing Instrument:
Sounds a perfect fifth lower
than notated

flute Flute

frenshHorn Frensh Horn

glockenspiel Glockenspiel Transposing Instrument:
Sounds two octaves higher
than notated

harmonica Harmonica

harp Orchestral Harp

harpsichord Harpsichord

horn Horn Synonymously used for Frensh
Horn

hornInF Horn in F Transposing Instrument:
Sounds a perfect fifth lower
than notated

oboe Oboe

organ Church Organ

pad Pad (New Age)

pad2 Pad (Warm)

panFlute Pan Flute

percussiveOrgan Percussive Organ

piano Piano Used as default if no
instrument is specified

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

48

piccolo Piccolo Transposing Instrument:
Sounds one octave higher
than notated

reedOrgan Reed Organ

recorder Soprano Recorder Transposing Instrument:
Sounds one octave higher
than notated

recorderAlto Alto Recorder

recorderBass Bass Recorder Transposing Instrument:
Sounds one octave higher
than notated, using bass clef
for notation by default

recorderContrabass Contrabass Recorder Notated using bass clef by
default

recorderGarklein Garklein Recorder Transposing Instrument:
Sounds two octaves higher
than notated

recorderGreatBass Great Bass Recorder Transposing Instrument:
Sounds one octave higher
than notated, using bass clef
for notation by default

recorderSopranino Sopranino Recorder Transposing Instrument:
Sounds one octave higher
than notated

recorderSubGreatBass Sub-Great Bass Recorder Transposing Instrument:
Sounds one octave lower than
notated, using bass clef for
notation by default

recorderSubContrabass Sub-Contrabass Recorder Transposing Instrument:
Sounds one octave lower than
notated, using bass clef for
notation by default

recorderTenor Tenor Recorder

rockOrgan Rock Organ

sitar Sitar

sopranoSax Soprano Saxophone

tenorSax Tenor Saxophone

tenorSaxInBb Tenor Saxophone in Bb Transposing Instrument:
Sounds a major ninth lower
than notated

timpani Timpani

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

49

trombone Trombone

trumpet Trumpet

trumpetInD Trumpet in D Transposing Instrument:
Sounds a major second higher
than notated

trumpetInBb Trumpet in Bb Transposing Instrument:
Sounds a major second lower
than notated

trumpetMuted Muted Trumpet

tuba Tuba

vibraphone Vibraphone

viola Viola

violin Violin

vocals Vocals

xylophone Xylophone

Untuned Percussion Instruments

The following instruments can generally not be played in different pitches:
Identifier Name Description

agogoHigh High Agogo

agogoLow Low Agogo

bassDrum Bass Drum

bassDrum2 Bass Drum 2 Alternative Bass Drum

bongoHigh High Bongo

bongoLow Low Bongo

cabasa Cabasa

china China Cymbal

claves Claves

congaHigh High Conga

congaLow Low Conga

congaHighMuted Muted High Conga

cowbell Cowbell

crash Crash Cymbal

crash2 Crash Cymbal 2

cuica Cuica

cuicaMuted Muted Cuica

guiroShort Short Guiro

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

50

guiroLong Long Guiro

handClaps Hand Claps

hiHatClosed Closed Hi-Hat

hiHatPedal Pedal Hi-Hat Hi-Hat played via pedal

hiHatOpen Open Hi-Hat

maracas Maracas

ride Ride Cymbal

ride2 Ride Cymbal 2

rideBell Ride Cymbal Bell

sideStick Side Stick

snare Snare Drum

snareElectric Electric Snare Drum

splash Splash Cymbal

tambourine Tambourine

timbaleHigh High Timbale

timbaleLow Low Timbale

tomHigh High Tom

tomHighMid High-Mid Tom

tomLowMid Low-Mid Tom

tomLow Low Tom

tomFloorHigh High Floor Tom

tomFloorLow Low Floor Tom

triangle Triangle

triangleMuted Muted Triangle

vibraslap Vibraslap

whistleShort Short Whistle

whistleLong Long Whistle

woodBlockHigh High Wood Block

woodBlockLow Low Wood Block

Instrument Definitions

If additional instruments are required, users are able to define custom instruments by providing
instrument definitions. Consider the following definition of an acoustic bass guitar:

instrumentDef acousticBass
{
 pitchRange [23..67]
 maxSimultaneousNotes 4

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

51

 scoreLabel "Bass"
 lilyPondInstrumentName "acoustic bass"
 defaultClef bass
 defaultOctave 2
}

The instrumentDef keyword is followed by an instrument identifier, which is used to
reference the instrument definition in instrument contexts. For example, the acoustic bass can
be referenced using the following syntax:

instrument acousticBass

Enclosed in curly braces, optional instrument parameters follow. Refer to the following table for
descriptions of the individual parameters.
Parameter Description

type Either percussion in case of percussion
instruments or synth for synthesizers used
for electronic / electroacoustic music. Omit this
parameter to create an instrument of default
type which is playable in different pitches.

pitchRange Specifies the compass of the instrument in
terms of MIDI notes in the syntax [lowest
note..highest note].

maxSimultaneousNotes Specifies the maximum number of notes which
can be played simultaneously.

scoreLabel Name of the instrument which is displayed at
the beginning of staves in scores.

lilyPondInstrumentName Instrument name used for assigning a MIDI
instrument when exporting LilyPond scores.
See LilyPond documentation.

defaultClef Default clef to use in scores. Currently
supported clef names are: treble, alto,
tenor and bass.

defaultOctave Default MIDI octave to use if none is specified
in composition models.

Pitches

MPS supports multiple types of pitch specifications. One possibility is to specify absolute pitches
and octave numbers such as Ab5. Refer to the following table for a specification of octave
numbers:
MIDI Note Numbers Octave Number Octave Name

0-11 -1 Double Contra

12-23 0 Sub Contra

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

52

http://lilypond.org/doc/v2.19/Documentation/notation/midi-instruments

24-35 1 Contra

36-47 2 Great

48-59 3 Small

60-71 4 One-line

72-83 5 Two-line

84-95 6 Three-line

96-107 7 Four-line

108-119 8 Five-line

120-127 9 Six-line

MIDI note numbers were specifically not chosen as pitch unit, since enharmonic differentiations
are not possible. For instance, the pitch names G# and Ab correspond to same key on piano
(assuming the same octave number is specified), but have different musical meanings relating
to the harmonic context (see section Harmonic Contexts for more details). For this reason,
harmonically significant pitch names are used. Alternatively, pitches may be given in terms of
degrees on a scale, which is elaborated in section Scales.

The first two measures of W.A. Mozart’s Piano Sonata No. 16 in C major, K. 545, also known
as Sonata Facile, are used as an example for pitch specifications using pitch names and octave
numbers. Consider the following model:

The correspondent syntactical representation is:

composition
{

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

53

 rhythm 2 4 4 4. 16 16 4 _4
 {
 pitches (startOctave 5) C E G B_4 C D C
 }
}

The resulting score is:

Various syntax alternatives for pitch specifications are listed in the following table:
Syntax Description

<note name> Used for specifying pitches explicitly, e.g. D, C#
or Eb.

<integer number> Used for pitch specifications based on scale
degrees. Refer to section Scales for more
details.

(suffix) Raises the previously specified pitch or scale
degree by one semitone.

b (suffix) Lowers the previously specified pitch or scale
degree by one semitone.

[<pitches>] Square brackets are used to specify chords.
For example, a D major chord can be written
as [D F# A].

<code>@</code> (prefix) Indicates the usage of an expression to
dynamically compute a pitch or scale
degree. For example, the expression
<code>@getRootNote()</code> evaluates to
the root note of the current context harmony.
Refer to section Expressions for more details.

Additional parameters may be used when specifying pitches, which are explained in the
following table. If these parameters are used, they have to be syntactically enclosed in
parentheses before pitches or scale degrees are specified, as demonstrated in the previous
listing with the startOctave parameter.
Parameter Description

startOctave Specifies the octave to use if no octaves are
defined explicitly.

findNearestOctave If set to true, the system will change the
octave automatically if it implies a smaller
semitone distance to the previous note.
Example: in the pitch sequence A C the

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

54

system would start in the default octave
yielding A4. With findNearestOctave
enabled, the next pitch would be C5 because it
has a smaller distance to A4 than C4.

relative to Specifies which harmonic context is to be used
to determine the context scale and its tonic.
Possible values are key and harmony. Refer
to sections Scales and Harmonic Contexts for
more details.

Scales

An alternative to specifying absolute pitches is referring to pitches in terms of scale degrees.
Consider the following example, which shows a context tree model of Bed#ich Smetana’s
Moldau Theme. The pitches in the model are defined in terms of zero-based scale degrees.
The theme is referenced twice in the model: once from a minor scale context and once from a
major scale context.

The compilation of the model results in the following score:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

55

The model can be represented syntactically as follows:

composition
{
 time 6/8, key Em, instrument violin
 {
 scale minor
 {
 fragmentRef theme
 }
 scale major, key E
 {
 fragmentRef theme
 }
 }
}

fragment theme
{
 rhythm (8)
 {
 pitches 4
 }
 rhythm 4 8
 {
 pitches 7 8
 pitches 9 10
 }
 rhythm 4 8 4.
 {
 pitches 11
 }
 rhythm 4. 4.
 {
 pitches 12
 }
 rhythm 4. ~ 4 8
 {
 pitches 11

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

56

 }
 rhythm 4. 4 8 4 8 4 8 4. 4 8 4 _8 _4.
 {
 pitches 10 10 10 9 10 9 9 8 8 8 7
 }
}

Using scale degrees instead of absolute note names has several advantages:

1. Scale degrees are syntactically easier and shorter to write.
2. Thinking in terms of scale degrees is often more adequate regarding music theory and

reflects the way most composers and musicians think about pitches.
3. Scale degrees can be easily projected onto another scale. In other words, the same degrees

can be used in another scale context, which allows interesting musical variations.

This is also the case for the Vltava model, in which the theme is presented in two scale
contexts, namely a minor and a major version.

Note that the scale contexts used in the previous example are optional, because a default scale
context is derived from the current key context automatically. In the left branch, the current key
context is Em (E minor) which results in a matching minor scale context by default. In the right
branch, the harmonic context is E: (E major) and therefore the default scale is _major. Refer to
section Harmonic Contexts for more details.

Scale Definitions

MPS provides a number of built-in scales, which are listed in the following table:
Name Identifier Degrees in Semitones

Major major 0 2 4 5 7 9 11

Ionian ionian 0 2 4 5 7 9 11

Minor minor 0 2 3 5 7 8 10

Aeolian aeolian 0 2 3 5 7 8 10

Blues blues 0 3 5 6 7 10

Chromatic chromatic 0 1 2 3 4 5 6 7 8 9 10
11

Diminished diminished 0 1 3 4 6 7 9 10

Dorian dorian 0 2 3 5 7 9 10

Harmonic Major harmonicMajor 0 2 4 5 7 8 11

Harmonic Minor harmonicMinor 0 2 3 5 7 8 11

Locrian locrian 0 1 3 5 6 8 10

Lydian lydian 0 2 4 6 7 9 11

Major Pentatonic majorPentatonic 0 2 4 7 9

Minor Pentatonic minorPentatonic 0 3 5 7 10

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

57

Melodic Major melodicMajor 0 2 4 5 7 8 10

Melodic Minor melodicMinor 0 2 3 5 7 9 11

Mixolydian mixolydian 0 2 4 5 7 9 10

Phrygian phrygian 0 1 3 5 7 8 10

Whole-tone whole 0 2 4 6 8 10

If additional scales are required, users are able to define custom scales using scale definitions
in the header section of composition files. Here is an example definition for the dorian scale:

scaleDef dorian
{
 degrees 0 2 3 5 7 9 10
}

Loudness

To account for the loudness dimension of music, MPS supports both static loudness contexts
and gradual loudness contexts. The latter are used to model crescendo and decrescendo.

Static loudness specifications are syntactically described with the loudness keyword followed
by a single loudness instruction such as

loudness ff

Refer to the following table for a enumeration of possible loudness specifications and mappings
to common loudness units.
Name Literal MIDI Velocity Amplitude Approximated

Sound Pressure
Level in dB(SPL)

pppppp pppppp 4 0.03 3.78

ppppp ppppp 8 0.06 7.56

pppp pppp 16 0.13 15.12

pianopianissimo ppp 28 0.22 26.46

pianissimo pp 40 0.31 37.80

piano p 52 0.41 49.13

mezzopiano mp 64 0.50 60.47

mezzoforte mf 76 0.60 71.81

forte f 88 0.69 83.15

fortissimo ff 100 0.79 94.49

fortefortissimo fff 112 0.88 105.83

ffff ffff 120 0.94 113.39

fffff fffff 124 0.98 117.17

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

58

ffffff ffffff 127 1.00 120.00

Gradual loudness specifications (i.e. crescendo and decrescendo) contain two loudness
instructions delimited by the token -> such as

loudness p -> f

For gradual loudness instructions, the special loudness instruction current may be used,
which refers to the last loudness level specified in the composition. This is also demonstrated in
the following context tree model of W.A. Mozart’s Concerto for Flute, Harp, and Orchestra in C
major, K. 299/297c.

The language representation of this model looks like this:

composition
{
 instrument oboe
 {
 loudness f
 {
 repeat 2
 {
 rhythm 4. 8 8 8 8 8
 {
 pitches 14 11 9 7 9 11
 }
 }
 rhythm 4
 {
 pitches 14
 }
 }
 rhythm 4
 {

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

59

 loudness p
 {
 pitches 7 6 7
 }
 loudness f
 {
 pitches 8
 }
 loudness p
 {
 pitches 8 7# 8
 }
 loudness f
 {
 pitches 9
 }
 loudness p
 {
 pitches 9 8# 9
 }
 loudness current -> f
 {
 pitches 10 11 12 13
 }
 }
 loudness f
 {
 rhythm 7/4 _4
 {
 pitches 14
 }
 }
 }
}

This is the resulting score. Note specifically the crescendo resulting from a gradual loudness
context in the sixth measure:

Harmonic Contexts

Harmonic contexts are especially important in western tonal music, in which pitches in
compositions are usually organized in reference to specific keys. Matching scales and functions

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

60

of specific chords can be derived depending on the key context. MPS supports explicit
specifications of harmonic contexts including hierarchically arranged keys and contextual
harmonies.

Keys

Keys serve as musical „landmarks” in tonal compositions. While simple pieces might only define
one key, more complex compositions might incorporate temporary key changes (modulations)
or even key changes for whole sections or parts of the piece, for instance compositions geared
to the sonata form. Modulations and key changes can be modeled elegantly in MPS using
hierarchical arrangements (as discussed in section Hierarchical Structures and Polymorphism
). In this way, the scope of the specified keys can be controlled using an arbitrary number of
logical levels.

An example is provided in the following figure, which contains a schematic hierarchical
arrangement of keys used in the first movement of Mozart’s Symphony No. 40 in G minor, K.
550. The global key of this movement is G minor. Themes are presented in the exposition in
G minor and its relative major key Bb major. In the development, Mozart modulates through a
number of keys starting with F# minor. The recapitulation concludes in the global key G minor.

Syntactically, keys are defined by referring to the root note name (for instance G or D#) and the
optional suffix m indicating a minor harmony (e.g. Am or Bbm).

Harmonies

While keys provide a global harmonic context in tonal compositions, harmonic progressions
provide local harmonic transitions. These can be expressed implicitly by specifying

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

61

simultaneously sounding notes or in an explicit way, for example in the style of lead sheets (as
shown in this example).

The following context tree model defines a harmonic progression consisting of four local
harmonies. These are hierarchically embedded in the global key context A minor.

The resulting score is shown below:

Syntactically, this can be written as:

composition
{
 key Am
 {
 rhythm 1

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

62

 {
 pitches(relative to harmony) [0 2 4]
 {
 harmony Am
 harmony G
 harmony F
 harmony E
 }
 }
 }
}

The complexity of harmonies is not limited to major and minor chords. MPS supports additional
notes and harmony specifications as specified in the following table:
Syntax Description

<integer number> Additional harmony note relative to the root
note, expressed in terms of scale degrees. For
example, F7 translates to a F major chord with
added minor seventh.

or b (prefix) Optional prefix for additional harmony notes
to indicate a semitone correction upwards or
downwards, respectively.

maj7 Adds a major seventh relative to the root note.

m7 Indicates a minor chord with a minor seventh.

sus2 Suspended second chord in which a perfect
second is added and the third is omitted.

sus4 Suspended second chord containing a perfect
fourth but no third.

° Diminished chord

+ Augmented chord

power Power chord containing only the root and the
fifth. Frequently used in rock and metal genres.

Note that these additions can be combined, for instance A7sus4 defines a harmony with the
notes A, D, E and G. Refer to section Harmonic Modifiers for more examples demonstrating
harmony additions.

Harmonic Progressions

In certain cases it is convenient to specify a harmonic sequence as a whole. In MPS, this is
possible using the harmonicProgression keyword in combination with a harmonicRhythm
instruction defining the duration of each harmony in the progression. This is demonstrated in the
following context tree model:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

63

It results in an equivalent score as the previous example in section Harmonies.

The following code contains the corresponding language representation:

composition
{
 key Am
 {
 harmonicProgression Am G F E, harmonicRhythm 1 1 1 1
 {
 rhythm 1 1 1 1
 {
 pitches(relative to harmony) [0 2 4]

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

64

 }
 }
 }
}

Lyrics

In vocal music, sung notes are normally associated with syllables, which is considered as a
separate context dimension in the MPS model. Syllables are provided using a simple word-
based syntax. To distribute syllables of a word onto multiple notes, hyphens (-) may be used.
Syllable assignments for specific notes can be skipped using underscores (_). As an example,
the first measures of the song Hey Jude by the Beatles is used. The context tree model looks
like this:

Is can be represented with the following syntax:

composition
{
 key F
 {
 rhythm (4) 2 _8 8 8 8 2 _2
 {
 pitches 4 2 2 4 5 1
 {
 lyrics "Hey Jude don't make it bad"
 }

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

65

 }
 rhythm (8 8) 4 4. 8 8 8 8 16 16 2 _4
 {
 pitches 1 2 3 7 7 6 4 5 4 3 2
 {
 lyrics "take a sad song and make it bet-te--r"
 }
 }
 }
}

It results in the following score:

Custom Contexts

MPS offers the feature to create arbitrary custom contexts. An example is shown in the following
model:

The context tree model contains three sections which individual moods are described by
means of custom context nodes. Custom contexts are syntactically defined by the keyword
customContext, followed by a context identifier (in this case mood) and a string literal
containing the value for the context. Refer to the following listing for the corresponding language
representation:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

66

composition
{
 fragment section1
 {
 customContext mood "vivid"
 }

 fragment section2
 {
 customContext mood "melancholic"
 }

 fragment section3
 {
 customContext mood "maestoso"
 }

}

Custom contexts are visually represented as separate layers in models. Scores generated from
models containing custom contexts will contain textual annotations such as ``Mood: vivid'' at the
top of the relevant staves.

Context Modifiers

Frequently, already introduced musical material is slightly changed and shaped in the course of
compositions. In these cases, no fundamentally new ideas are introduced, but existing ones are
modified. To account for this, so called context modifiers allow to adjust already existing musical
material. Their functionality is explained in the following subsections.

By default, modifiers are applied to the next matching context above the modifier node. If the
modifier should also be applied to nodes beneath it, add the keyword recursive after the
modifier specification.

Rhythmic Modifiers

Rhythmic context modifiers have the purpose of manipulating existing rhythmic contexts in a
musical composition.

Augmentations and Diminutions

Rhythmic augmentation involves prolonging the note lengths of a given rhythm by multiplying
the original lengths with a constant factor, typically 2. However, other scale factors are possible.
A rhythmic diminution is considered as the opposite of a rhythmic augmentation, i.e. the note
lengths are not extended but shortened by a constant factor.

The following example demonstrates a model of a subject being transformed using diminution
and inversion. It can be found in J.S. Bach’s Die Kunst der Fuge, BWV 1080, Contrapunctus
VII.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

67

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

68

The language representation looks as follows:

composition
{
 key Dm
 {
 parallel
 {
 fragmentRef soprano
 fragmentRef tenor
 }
 }
}

fragment soprano
{
 rhythm _1
 inversion 11
 {
 fragmentRef subject
 }
}

fragment tenor
{
 diminution, scale melodicMinor
 {
 fragmentRef subject
 }
}

fragment subject
{
 rhythm 2 4. 8 4. 8 2 2 4. 8 5/8 8 8 8 4 _4 _2
 {
 pitches 0 4 3 2 1 0 -1 0 1 2 3 2 1 0
 }
}

The following results from this model:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

69

Rhythmic Extensions

Rhythmic modifiers are used to extend the duration of the last note or rest in a rhythm. This
modifier was already demonstrated in the context tree model for Beethoven’s Symphony No. 5
in C Minor, Op. 67 in section Introductory Example.

Syntactically, rhythmic extensions are specified using the keyword rhythmicExtension,
followed by a note duration as explained in section Rhythms. If the note duration is positive, the
rhythm is extended. If the note duration is negative, the rhythm is shortened by the absolute
value of the given negative duration.

Rhythmic Adjustments

Rhythmic adjustment modifiers allow to modify the rhythm in the current context at the
beginning and at the end. The modifications are specified by means of two durations for the
beginning and the end of the rhythm, respectively. It is possible to specify both or only one of
the parameters. Refer to the following table for detailed parameter descriptions.
Parameter Description

startDelta Specifies how the rhythm is modified at the
beginning. If startDelta is positive, the
rhythm will start from the given time, effectively
shortening the rhythm by startDelta. If
startDelta is negative, the first note or rest
of the rhythm will be extended.

endDelta Specifies a duration for the adjustment of the
end of the rhythm. If endDelta is positive, the
rhythm is extended; if endDelta is negative,
the rhythm is shortened. The behaviour is
identical with the rhythmicExtension
modifier introduced in section Rhythmic
Extensions.

Rhythmic Insertions

This modifier inserts a rhythm into the contextually present rhythm. This can either happen in an
additive manner, whereupon existing notes and rests are shifted to the right, or in a destructive
manner, whereupon existing elements are overwritten.

A rhythmic insertion was already demonstrated in Queen’s Bohemian Rhapsody in section
Inheritance. Refer to the score in this section and compare the rhythms in the first and the

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

70

second measure, which both start off with three eighth notes, but continue differently. In
the model this is expressed using a rhythmic insertion. It is used in the right subtree, which
represents the specifics of the second measure. The rhythm 8 16 5/16 is inserted into
the basic rhythm _8 8 8 8 4 4 at offset 2, i.e. after the duration of a half note, effectively
replacing the two quarter notes with the specified rhythm. The following table contains
explanations for all parameters of this modifier.
Parameter Description

offset Specifies after which duration the insertion
should be applied to the rhythm.

rhythm Defines the rhythm to be inserted in the syntax
introduced in section Rhythms.

mode Either insert to shift existing notes and rests
after the insertion to the right or overwrite to
overwrite existing elements.

Rhythmic Displacements

Rhythmic displacement modifiers are used to translate existing rhythms by moving them to the
right or to the left in itself. The modifier takes a note duration offset and a mode specification as
parameters, which is explained in detail in the following table.
Parameter Description

offset Defines the rhythm translation offset. For
positive durations, the rhythm is shifted to the
right, for negative durations to the left.

mode In discard mode, notes moved over the
rhythm’s boundary are removed. In wrap
mode, the notes are appended to the other end
of the rhythm.

As an example, consider Steve Reich’s composition Clapping Music, in which a rhythmic motif
is repeatedly performed by two players. For the second player, the rhythm is iteratively shifted
and wrapped, resulting in twelve rhythmic variations. The following context tree model contains
a repeatedly applied rhythmic displacement modifier:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

71

The following score results:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

72

The syntactical representation of the model follows:

composition
{
 time 12/8, tempo 168
 {
 instrument handClaps
 {
 parallel
 {
 repeat 13
 {

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

73

 fragmentRef motiv
 }
 for n in 0 to -12 step -1
 {
 fragmentRef motiv
 {
 rhythmicDisplacement mode wrap offset n/8
 }
 }
 }
 }
 }
}

fragment motiv
{
 repeat 4
 {
 rhythm 8 8 8 _8 8 8 _8 8 _8 8 8 _8
 }
}

Pitch Modifiers

Pitch modifiers are used for manipulating contexts in the musical pitch dimension.

Transpositions

Transpositions have the effect of modifying contextually available pitches. The modifier can
be applied in three modes in order to support semitone-based transpositions, scale-based
transpositions and octave translations. All parameters are explained in the following table:
Parameter Description

mode Defines the unit of the interval expression.
Three modes are available: absolute for
semitone-based transpositions, inScale
to perform transpositions of scale degrees
and octaves for octave translations. If
the parameter is not specified, the default
absolute will be used.

interval Expression which must be interpretable as
an integer number. The unit of this number is
defined by the mode parameter.

Refer to section Sequences for an example demonstrating various transposition techniques.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

74

Inversions

Inversions were already demonstrated in section Augmentations and Diminutions in conjunction
with a diminution using J.S. Bach’s Die Kunst der Fuge, BWV 1080, Contrapunctus VII as an
example.

Parallel Intervals

Parallel interval modifiers add simultaneously audible pitches in a specific interval to existing
pitches. The intervals can be specified in terms of semitones, scale degrees or octaves. As
an example, a context tree model of the guitar intro of Deep Purple’s Smoke on the Water is
demonstrated:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

75

The language representation of this model is:

composition
{

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

76

 time 4/4, tempo 110
 {
 instrument electricGuitarOverdriven
 {
 key Gm
 {
 scale blues
 {
 parallelInterval mode absolute -5 recursive
 {
 fragmentRef fragment1

 rhythm _8 8 _8 8 _8 8 4 _4
 {
 pitches 0 1 3 2
 }

 fragmentRef fragment1

 rhythm _8 8 _8 4. _2
 {
 pitches 1 0
 }
 }
 }
 }
 }
 }
}

fragment fragment1
{
 rhythm 8 _8 8 _8 4
 {
 pitches 0 1 2
 }
}

The model results in the following score:

The main melodic motif is notated in terms of degrees on the minor blues scale, which consists
of the minor pentatonic scale with an added „blue note” between the 3rd and 4th scale degree:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

77

The upper notes of the famous Smoke on the Water riff can be specified in terms of scale
degrees on the G minor blues scale. When analyzing the distance between the notes, it
becomes apparent that the lower notes have a constant distance to the upper notes, namely
five semitones or a perfect fourth. It is therefore convenient to specify this circumstance rather
than specifying each lower pitch manually. Refer to the following table for a detailed description
of parallel interval modifier parameters.
Parameter Description

mode Specifies the interval unit. Available modes are
absolute (in semitones), inScale (for scale-
specific parallel intervals) and octaves.

interval Expression to define the parallel interval. The
expression must be interpretable as integer
number. See section Expressions for more
details.

Note that the first and third measure are exactly identical, which is why the individual musical
contexts of these measures were extracted to a fragment and referenced twice, as already
described in section Fragments.

Harmonic Modifiers

Harmonic modifiers are used to extend or alter contextually accessible harmonies. In the
following context tree model, various harmony modifications of the base harmony A major are
demonstrated:

The resulting chords of the modifications are: A major, A⁷, A^{maj7}, A
augmented and A diminished. Compare the model with the resulting score:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

78

Refer to section Chord Generators for details on the chordGenerator.

Context Generators

The purpose of context generators is to create new contexts based on already existing contexts.
For example, pitch contexts can be built based on harmonic contexts, as explained in the
following sections.

Chord Generators

Chord generators create pitch contexts representing specific chord inversions for contextually
available harmonies. Refer to the following model for an example, in which an abstract chord
progression is defined using Roman numerals.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

79

Concrete chord inversions are derived using a chord generator, resulting in the following score:

In the language, this model can be expressed as follows:

composition {
 key E
 {

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

80

 harmonicProgression I IV ii V7 I
 {
 harmonicRhythm 4 4 4 4 1
 {
 rhythm 4 4 4 4 1
 {
 chordGenerator
 }
 }
 }
 }
}

Chord generators can be flexibly configured for various musical applications. All possible
parameters are described in the following table:
Parameter Description

startOctave Defines the octave in which the lowest note of
the first chord is generated.

startInversion Specifies the default inversion of this chord
generator. 0 corresponds to the root position, 1
to the first inversion etc.

numberOfNotes Defines how many notes are generated for
each chord. If this parameter is not specified,
the minimum number of notes to express a
harmony adequately are used. For example,
three notes are used for major or minor chords
but four notes for a dominant seventh chord.

includeBassNote If set to true, the bass note (which in some
cases can be different from the root note) is
included in chords.

findNearestInversion If set to true, the system will minimize the
distance between successive chords. In other
words, inversions with a minimum aggregated
semitone distance to the previous chord will be
used.

Arpeggio Generators

Arpeggio generators are specialized chord generators which allow to distribute individual notes
of generated chords sequentially in time. A simple example is demonstrated in the following
context tree model:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

81

The resulting score is:

The corresponding language representation is:

composition
{
 time 6/8, harmony Em
 {
 rhythm 8 8 8 8 8 8
 {
 arpeggioGenerator (numberOfNotes 4 noteIndexSequence 0 1 2 3 2
 1)
 }
 }
}

Internally, arpeggio generators determine concrete chord inversions just like chord generators.
Therefore, all parameters of chord generators (see section Chord Generators) can be applied
to arpeggio generators. However, instead of generating simultaneously played notes, arpeggio
generators produce sequentially played notes in a contextually available rhythm. For this

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

82

purpose, the generator sequentially chooses notes from the current chord. By default, notes
are chosen in ascending order and this sequence is wrapped if more notes are required. For
example, for a D minor chord (D-F#-A) and a rhythm with four notes, the resulting arpeggio
sequence would be D-F#-A-D.

The sequence of the selected notes can be influenced with the so called note index sequence.
Each note in the chord is assigned a zero-based index (e.g. for the above mentioned example
the indices would be: D ⇒ 0, F# ⇒ 1, A ⇒ 2). To produce descending instead of ascending
arpeggios, the default note index sequence 0 1 2 could be changed to 2 1 0. In the previous
example, the note index sequence 0 1 2 3 2 1 is used which results in an alternating
ascending and descending arpeggio.

A more complex example is demonstrated in the following model:

The model produces the first four measures of J.S. Bach’s well-known Prelude in C Major,
BWV 846. Two separate arpeggio generators are used to generate independent arpeggios for
the left and the right hand. An advanced feature is used in the third chord (used in the third
measure). The harmony is specified as G⁷ with B in the bass. Additionally, a
so called note exclusion with the syntax -B is specified. It instructs the compiler to skip the
relevant note during the chord inversion computing process. As can be seen in measure 3 in the

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

83

following score, the note B is not present in the arpeggio. To account for this, specific notes can
be excluded from the chord generation process.

Control Structures

Control structures can be utilized to dynamically reuse contexts in context tree models with the
help of loops, iterative modifications and other algorithmic constructs, which are explained in
detail in this section.

Parallelizations

Parallelizations are used to indicate that tree branches below are not to be evaluated
sequentially, but in parallel. This results in individual musical streams resulting in multiple parts
or voices being played simultaneously.

As an example, a parallel version of an already introduced context tree model is shown. The
following model uses a parallelization node to purpose the melody being played simultaneously
by flute and clarinet:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

84

This is syntactically accomplished with the parallel keyword:

composition
{
 time 3/4
 {
 parallel
 {
 instrument flute
 {
 fragmentRef melody
 }
 instrument clarinet
 {
 fragmentRef melody
 }
 }
 }
}

fragment melody
{
 rhythm 4. 16 16 16 16 16 16, pitches 7 6 7 8 7 6 5
 rhythm 8 16 16 4. 16 16, pitches 7 7 5 7 6 7

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

85

 rhythm 16 16 16 16 9/16, pitches 5 4 2 3 4
 rhythm 16 16 16 16 16 16 16 4, pitches 3 2 1 2 3 4 5 4
}

The resulting score is:

Compare with the model already presented in section Instruments, which results in sequentially
played melodies.

Repetitions

Repetition is a frequently utilized technique in music composition and is applied in a variety
of forms. A common form of repetitions is known from musical scores, in which repeat signs
indicate that a section of the score is to be played again (as an example, refer to section
Rhythmic Displacements).

In MPS, arbitrary subtrees of contexts can be repeated, which can be applied to single contexts
or combinations of musical contexts. Furthermore, repetitions can be nested hierarchically. This
is demonstrated using a context tree model of a simple drum groove:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

86

The corresponding language representation is:

composition
{
 time 4/4, tempo 100
 {
 repeat 2
 {
 parallel
 {
 instrument hiHatClosed

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

87

 {
 repeat 8
 {
 rhythm 8
 }
 }
 instrument snare
 {
 repeat 2
 {
 rhythm _4 4
 }
 }
 instrument bassDrum
 {
 rhythm 4 _4 8 8 _4
 }
 }
 }
 }
}

The model produces the following score:

The model contains nested control structures to repeat context subtrees. The outer structure
(repeat 2) repeats the whole measure produced by the subtree below the parallel
element. It produces musical material for closed hi-hats, bass drum and snare. A nested
repetition resulting in 8 eights notes is specified for the hi-hats. Also, the snare drum repeats
the rhythmic pattern of a quarter rest followed by a quarter note (rhythm _4 4) twice, which
is also expressed as a nested repetition. In this manner, repetitions of musical context subtrees
can be hierarchically nested in arbitrary complexity.

The repeat count can be bound to a variable, which can be utilized to introduce conditional
contexts. This technique is demonstrated in the following section.

Conditions

Condition nodes can be used to define conditional contexts. Therefore, an expression is defined
which is evaluated to a boolean expression, yielding either true or false. Depending on the
result, a different context tree branch is used. This is illustrated in the following context tree
model, which produces the drum introduction of Coldplay’s In My Place.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

88

The resulting drum part is:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

89

Syntactically, this model can be expressed as:

composition
{
 time 4/4, tempo 72
 {
 repeat 2 as outerCount
 {
 parallel
 {
 fragment cymbals
 {
 repeat 8 as innerCount
 {
 rhythm 8
 {
 if outerCount == 1 and innerCount == 1
 {
 instrument crash
 }
 else
 {
 instrument hiHatOpen
 }
 }
 }
 }

 instrument bassDrum
 {
 rhythm 4 _8. 16 _16 16 8 _4
 }

 instrument snare
 {
 rhythm _4 8. _16 _4 4
 }
 }
 }
 }
}

The contexts for the cymbals are specified conditionally in this context model. A condition based
on the current repetition counts of an outer and an inner repeat control structure is specified.
It evaluates to true if both the outer and inner repetition count is 1. If this is the case, a crash
cymbal is used as instrument context. In all other cases, the open hi-hats are played. In the

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

90

two measures shown in in the drum part, it can be seen that the condition evaluates to true
only in the first measure on the first beat, on which a crash cymbal is played. On all other beats,
especially on the first beat in the second measure, an open hi-hat is played because the outer
repetition count evaluates to 2 in the second measure.

Condition expressions can be based on arbitrary variables defined in any context nodes which
are hierarchically placed above the current condition node. Notably, results of function calls
can be used to create dynamically modeled compositions using conditional contexts. Refer to
section Function Calls for more details.

Iterations

Iterations are used to create loops in which musical material is iteratively modified. The control
structure resembles for loops in general purpose programming languages. Iterations define
a control variable which typically changes its value in every loop iteration. The following model
and the corresponding code demonstrate an iteration producing a G minor blues scale, which
was already introduced in section Parallel Intervals.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

91

The language representation of this model is:

composition
{
 key Gm
 {
 scale blues
 {
 rhythm 4
 {
 for degree in 0 to 6
 {

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

92

 pitches @degree
 }
 }
 }
 }
}

Also refer to section Rhythmic Displacements, in which a rhythmic pattern is iteratively
displaced using a corresponding control structure and a suitable rhythmic modifier.

Sequences

MPS provides a separate control structure for melodic sequences. Technically, melodic
sequences are translated to an iteration with nested transpositions. The following context tree
model represents a sequence from J.S. Bach’s Invention No. 4 in D minor, BWV 775:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

93

The model can be syntactically represented as follows:

composition
{
 time 3/8, key Dm
 {
 parallel
 {
 rhythm 16
 {
 pitches 9 7 8 9 10 11 5 11 10 9 8 7
 {
 sequence 2 times step -1 mode inScale
 }
 }
 rhythm 8
 {
 pitches 0 7 2 3 4 5, transpose mode octaves -1
 {
 sequence 2 times step -1 mode inScale
 }
 }
 }
 }
}

The model produces the following score:

Sequence control structures are applied both to the right hand and the left hand voice. Both
sequence control structures are applied twice (2 times). In the first iteration, the specified
pitches are adopted without modification. In the second iteration, the pitches are transposed
one step down. Consequently, the scale degrees of both voices are diatonically transposed
down in parallel. Refer to the following table for detailed parameter descriptions.
Parameter Description

times Specifies how often the sequence is repeated.

step Defines the offset of the iteratively applied
transposition. The unit of this expression is
defined by the mode parameter.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

94

mode Defines the unit of the interval expression.
Three modes are available: absolute for
semitone-based transpositions, inScale
to perform transpositions of scale degrees
and octaves for octave translations. If
the parameter is not specified, the default
absolute will be used.

While-Loops

The contents of while-loops are applied as long as a specified condition is fulfilled. An example
is demonstrated in the following model:

A possible result is shown below:

The syntax representation of this model is:

composition

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

95

{
 while getMeasureNumber() <= 2
 {
 rhythm 8
 {
 pitches @getRandomInteger(0, 7)
 }
 }
}

The loop is applied while the measure number is less than or equal to 2 (i.e. in the
first two measures). The current measure number can be retrieved using the function
getMeasureNumber(). Pitches are chosen randomly using another function call to
getRandomInteger(). Refer to section Function Calls for more details.

Switches

This control structure selects and processes only one of the specified child tree branches for
each invocation. If the structure is encountered again (e.g. due to a repeat), the next child
branch is processed. If no more child branches are available, processing continues from the first
child branch again.

An example is provided in the following context tree model, in which the same melody is
repeated three times. The switch control structure applies three different lyrics contexts for each
loop iteration. Consequently, each time the switch is encountered, other lyrics are produced in
the right subtree.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

96

The corresponding language representation is:

composition
{
 instrument vocals
 {
 repeat 3
 {
 rhythm (4) 4 _2.
 {
 pitches 4 2
 {
 lyrics "Hey Jude"
 }
 }
 rhythm (8 8 8) 4 _2.
 {
 pitches 2 4 5 1

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

97

 {
 switch
 {
 lyrics "don't make it bad"
 lyrics "don't be af-raid"
 lyrics "don't let me down"
 }
 }
 }
 }
 }
}

The model produces the following score:

It is also possible to define other non-consecutive processing sequences. This is done by
specifying a so called child index sequence, as shown below:

switch childIndexSequence 0 0 1

The previously specified switch will process the first child branch twice, followed by the
second child branch. If invoked again, processing will start over at the beginning of the custom
sequence.

Expressions

Expressions are used to represent dynamically computable parameters in context tree models.
These are especially useful for algorithmic composition, in which certain musical parameters are
computed based on mathematical rules. MPS uses a custom expression language supporting
logical and arithmetic expressions with variables and function calls.

Literals

A basic unit of information in the expression language is given in the form of literals. Refer to the
following table containing a summary of available literal types.
Type Description Internal Type

boolean Boolean value. Permitted
literals are true and false.

boolean

integer Integer number with optional
negative sign, such as 42, -23
or 0.

int

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

98

float Floating point number with
optional negative sign, such as
3.1415 or -2.1.

double

fraction Fraction represented by an
integer numerator and integer
denominator, for instance
1/4. Arithmetic divisions
automatically result in a
fraction if both operands are
integer numbers.

Fraction

string Represents a sequence of
zero or more characters
encoded in UTF-16.

java.lang.String

Operators

The system supports boolean operators, comparison operators and arithmetic operators. The
operators are listed in the following table ordered by operator priority, from highest to lowest
precedence.
Operator Description

! Unary boolean negation operator. For
example, !true evaluates to false.

- Unary arithmetic negation. For example, -
(2+1) evaluates to -3.

* Arithmetic multiplication

/ Arithmetic division. Results in a fraction if both
operands are integer numbers.

% Modulo operator

+ Arithmetic addition. May also be used to
concatenate strings.

- Arithmetic subtraction

== Evaluates to true if the left operand is equal
to the right operand.

!= Evaluates to true if the left operand is not
equal to the right operand.

< Evaluates to true if the left operand is less
than the right operand.

> Evaluates to true if the left operand is greater
than the right operand.

<= Evaluates to true if the left operand is equal
to or less than the right operand.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

99

https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html
https://www.ietf.org/rfc/rfc2781.txt

>= Evaluates to true if the left operand is equal
to or greater than the right operand.

and Boolean and operator. Result of the expression
is true if and only if both operands evaluate to
true.

or Boolean or operator. Result of the expression
is true if at least one of the operands
evaluates to true.

Parentheses may be used for custom operator prioritization, for example:

(2 + 3) * 4

In the previous expression, the term 2+3 is evaluated first and the result is multiplied with 4. If
no parentheses would be used, 3*4 would be evaluated first due to higher precedence of the
multiplication operator.

Type Conversions

Expressions are dynamically casted if required. For example, to evaluate the following
expression, several dynamic type casts are applied.

1 + 0.7 > 3/4 and !(n % 2)

To sum 1 + 0.7, 1 is implicitly converted to a floating point number. To evaluate the
comparison 1.7 > 3/4, 1.7 is automatically converted to the fraction 17/10. The result of
the left-hand comparison 17/10 > 3/4 yields true. The modulo operation on the right hand
side results in the remainder of n being divided by 2. The remainder is wrapped in a boolean
negation. This implies that the remainder must implicitly be cast to a boolean expression. It
evaluates to false if the remainder is equal to zero and to true otherwise. The boolean result
of this implicit cast is negated and then used as right operand for the and conjunction. The right
hand side of the and-operator can also be read as: „if n is dividable by 2”. Refer to following
table for an overview of implicit type conversion rules.
Type 1 Type 2 Resulting Type

boolean integer integer

boolean float float

boolean fraction fraction

boolean string string

integer float float

integer fraction fraction

integer string string

float fraction fraction

float string string

fraction string string

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

100

The following table specifies the applied transformations. Source types are listed on the left,
target types are listed in the columns on top.

boolean integer float fraction string

boolean - false ⇒ 0,
true ⇒ 1

false ⇒ 0.0,
true ⇒ 1.0

false ⇒ 0/1,
true ⇒ 1/1

false ⇒
„false”, true

⇒ "true"

integer false if equal
to 0, true
otherwise

- as specified by
doubleValue

n/1 as specified by
valueOf

float false if equal
to 0.0, true
otherwise

Nearest
integer below
the value of
the floating
point number

- Nearest
computable
fraction as
specified by
Fraction

as specified by
valueOf

fraction false if
fraction is
equal to
0/1, true
otherwise

Whole number
part of the
fraction as
specified by
intValue

as specified by
doubleValue

- as specified by
toString

string false if string
is empty, true
otherwise

as specified by
parseInt

as specified by
parseDouble

Supported if
string contains
two integer
numbers
separated by a
slash (/) or a
single integer
number

-

Function Calls

Functions are used to dynamically retrieve musical context information. They are evaluated
during the compilation process (see section Rendering Context Layer Model Representations
). The returned values depend on the given parameters, the stream context and the temporal
context in which they are invoked. Refer to the following table for an overview of available
functions.
Signature Return Type Description

chordsAvailable() boolean Returns true if context
harmonies are available in
the current context, false
otherwise.

getRootNote() NoteReference Returns the root note of the
current context harmony.

getBassNote() NoteReference Returns the bass note of the
current context harmony,

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

101

https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#doubleValue()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(int)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#Fraction(double)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(double)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#intValue()
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#doubleValue()
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#toString()
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#parseInt(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#parseDouble(java.lang.String)

which can in some cases be
different from the root note.

getRandomBoolean() boolean Returns a random boolean
value, i.e. true or false.

getRandomInteger(min,
max)

integer Returns a random integer
value between min (inclusive)
and max (exclusive).

getRandomDouble(min,
max)

double Returns a random double
value between min (inclusive)
and max (exclusive).

getTime() fraction Returns the current time in the
current stream in terms of note
duration (e.g. after a quarter
note, the elapsed time is 1/4).
Refer to section Time Model
for more details.

getTimeSignature() TimeSignature Returns the current time
signature.

isInFragmentContext(string)boolean Returns true if the current
context stack contains the
fragment with the given name,
false otherwise.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

102

Music Transformation and Visualization

Music Processing Suite offers a transformation infrastructure to convert a number of music
representation formats, including:

• MIDI files
• MusicXML files
• MC3L files, text files containing composition tree models specified using the domain-specific

MPS composition language
• In-memory context tree composition models
• In-memory context layer composition models
• DOT representations of context tree models
• SVG representations of context layer models
• LilyPond score markup
• PDF scores
• SuperCollider code
• Music analysis data in the form of CSV files
• Music analysis reports in the form of PDF files

Refer to the following diagram for an overview:

Most of the transformations are covered in this chapter. For transformations regarding music
analysis, refer to the corresponding chapter.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

103

Rendering Context Tree Model Visualizations

Visual representations of context tree models can be generated by clicking the button

in the toolbar at the top of the application. The action is applicable to .mcl files, which must be
opened in an editor or selected before the button is clicked.

The resulting graph is stored as a .dot file with the file name <source
file>_TreeModel.svg, which can be processed with Graphviz. If you want to open the
resulting graphs, make sure Graphviz is installed and configured as described in section
Graphviz Installation.

For rendering options, see section Visualization Options.

Rendering Context Layer Model Representations

To transform a musical composition to a context layer model
representation, simply select a source file and click the button

in the toolbar at the top of the application.

Files with the following extensions can be converted to a context layer model:

• MIDI files with .mid or .midi extension
• .xml files with MusicXML content and .mxl files (compressed MusicXML)
• Files with .mcl extension containing context tree composition models in the domain-specific

language of MPS

In case of .mcl files, the conversion can also be invoked if the file is currently opened in an
editor which is currently focused.

As a result, an .svg file with the name <source file>_StreamModel.svg will be created
next to the source file. It will automatically be opened using a suitable application or editor. To
configure a custom application to open .svg files, refer to the official Eclipse documentation.

Refer to the following section for rendering options.

Visualization Options

To adjust visualization options for context layer models and context layer models, follow these
steps:

1. Open the MPS Preferences
1. On Windows and Linux: In the menu bar, choose Window → Preferences
2. On Mac: In the menu bar, choose Music Processing Suite (application menu) →

Preferences
2. Navigate to Music Processing Suite → Visualization

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

104

https://graphviz.gitlab.io/download/
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Freference%2Fref-13.htm

The following preference page will be shown.

The following visualization options are available:
Parameter Description

Omit Simple Reference Nodes in Context Tree
Model Graphs

By default, references are visualized by means
of a reference node and a dotted line to the
referenced node. If this option is activated, only
the dotted line will be displayed. This is only
possible if the reference node does not contain
additional child nodes.

Render Context Layer Model SVGs in
Monochrome Colors

Uses gray shades for stream model
visualizations.

Context Layer Model Scaling Factor Defines the number of horizontal graphical
units used to represent a whole note. Increase
this value if labels overlap their container
bounds in stream model SVG visualizations.

Transforming Compositions to Scores

MPS supports the generation of musical scores in .pdf and .midi format for various
input formats. The music notation software LilyPond is used for this purpose. Before
using this feature, make sure that LilyPond is installed and configured as described
in section LilyPond Installation. Score generation is triggered using the button

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

105

http://lilypond.org/

in the toolbar at the top of the application.

The following input file types are supported:

• MIDI files with .mid or .midi extension
• .xml files with MusicXML content and .mxl files (compressed MusicXML)
• Files with .mcl extension containing context tree composition models in the domain-specific

language of MPS

In case of .mcl files, the conversion can also be invoked if the file is currently opened in an
editor which is currently focused.

The system will internally convert the input file to a context layer model and derive a score
representation of that model. Subsequently, the score representation will be exported in the
form of a LilyPond file with the file name pattern <source file base name>_Score.ly.
The Eclipse plugin Elysium, which is automatically installed with MPS, will take care of the
compilation of the LilyPond file, resulting in <source file base name>_Score.pdf and
<source file base name>_Score.midi files of the score.

Score Generation Options

When generating a score for the first time, a launch configuration is automatically generated
and opened. Launch configurations allow the customization of the score generation for each
source file individually. The launch configuration dialog looks like this:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

106

https://marketplace.eclipse.org/content/elysium#group-details

After making the desired adjustments, click the Apply button and then click Run to generate the
score.

To change launch configurations later, click the black arrow next to the button

in the toolbar and click Run Configurations.... Open the category MPS Score Generation and
select the desired launch configuration.

The following options are available:
Parameter Description

Output Format Available output formats are LilyPond (.ly
files) and MusicXML (.musicxml or .mxl
files, depending on whether compression is
enabled).

Generate Tempo Specifications Indicates whether tempo specifications are
generated at the beginning of the piece and
when the tempo changes.

Generate Chord Symbols If activated, chord symbols are generated
above the staves.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

107

Omit Instrument Names Omits instrument names on the left hand side
of the staves. Also removes indention at the
beginning of the first staff or staff group.

Omit Short Instrument Names Short instrument names are usually instrument
abbreviations printed at the left hand side of
staves after the very first staff or staff group,
for example Cl. instead of Clarinet. Check this
box to omit these.

Insert Line Breaks before each Musical Section If set, labeled sections (e.g. Verse, Chorus)
start in a new staff block.

Generate Fret Board Diagrams If activated, fret board diagrams for the
selected instrument are rendered above
the staves illustrating the fingering of the
respective chords.

Score launch configurations can be reused, edited and deleted at any time. Refer to section
Launch Configurations for further details.

Transforming Compositions to SuperCollider

To convert a composition into executable code for the sound synthesis language SuperCollider,
simply click the button

in the toolbar at the top of the application. A file named <source file base name>.scd
will be created as a result, containing the code. It can be opened in SuperCollider or directly
executed from MPS, as explained in the following section.

Executing SuperCollider Code

The generated SuperCollider code can directly be executed in a running SuperCollider
instance. If you want to use this feature, a corresponding extension has to be installed
in your SuperCollider Extensions directory. To install the MPS extension, copy the file
MusicProcessingSuiteInterface.scd located in the directory SuperCollider of your
installation root directory (which is wrapped into a directory named Contents/Eclipse in the
MPS.app container on Mac OS X) to your SuperCollider Extensions directory. Refer to http://
doc.sccode.org/Guides/UsingExtensions.html for help locating the Extensions directory.

Once the extension is installed (and SuperCollider restarted if already running),
the resulting SuperCollider code can directly be executed by clicking the button

in the toolbar.

It is also possible to perform code execution with a key binding. It can be defined under
Preferences → General → Keys. Search for the action Execute SuperCollider Code and define
your own key binding. The recommended scope is In Windows. The configuration is shown in
the following screenshot:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

108

http://supercollider.github.io/
http://doc.sccode.org/Guides/UsingExtensions.html
http://doc.sccode.org/Guides/UsingExtensions.html

Deriving Context Tree Models

Context tree models can automatically be derived for existing compositions.
To invoke this functionality, select an input file and click the button

in the toolbar.

Supported input file types are:

• MIDI files with .mid or .midi extension
• .xml files with MusicXML content and .mxl files (compressed MusicXML)
• Also .mcl files (which already contain context tree models) can be given as input, because

it can be interesting to see whether the algorithm is able to construct an even more compact
model representation of a given context tree.

The resulting context tree model will be stored under the file name <source file base
name>_DerivedModel.mcl next to the input file.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

109

Launch Configurations

Eclipse stores configuration parameters for runnable processes in so called Launch
Configurations. MPS creates default launch configurations for the following processes
automatically:

• Score Generation
• Context-sensitive Search
• Music Analysis
• Algorithmic Composition
• Composition Crossover

These launch configurations can be reused, edited and deleted at any time. To
show available launch configurations, click the black arrow next to the button

in the toolbar and click Run Configurations....

In the following dialog, all launch configurations are displayed grouped by launch types. All
launch configurations can be run, edited and deleted. In the example below, a score generation
launch configuration is shown.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

110

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

111

Context-sensitive Search

MPS provides advanced context-sensitive search functionality to find musical material in a
corpus of compositions. Musical search queries can be expressed in the domain-specific
language introduced in chapter Composition Language and Context Tree Models. Conceptually,
search queries are formulated in terms of a compositional fragment, which is transformed to a
corresponding context layer model search pattern (see chapter Context Layer Models for more
details) and matched against context layer model representations of the pieces in the corpus.

Formulating Search Queries

To search for the rhythm of Beethoven’s 5th Symphony motif, for instance, the
search query can be formulated as:

composition
{
 rhythm _8 8 8 8 2
}

To search for a combination of this rhythm with the scale degrees 4 4 4 2 in the key C minor,
the query syntax could be:

composition
{
 key Cm, rhythm _8 8 8 8 2, pitches 4 4 4 2
}

Performing Context-sensitive Search

After formulating a search query, the search process can be invoked by clicking the button

in the toolbar. The search query file must either be opened in the active editor or be selected
in a navigator-based view. Alternatively, the search process can be initiated by invoking the
context menu with a right click and choosing Run As → Context-sensitive Search Query.

Search Configuration

When a search query is executed for the first time, a launch configuration is automatically
created and a dialog is opened in which further search parameters can be set:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

112

In this dialog, the corpus location, i.e. a file or folder to be searched, must be specified. Refer to
the following table for descriptions of other search parameters:
Parameter Description

Match pitches in all octaves Enables abstraction for octaves. For example,
if the search query contains pitches in octave 4
(which is the middle octave), the same pitches
will also be matched in other octaves.

Key Abstraction This option will enable key context matching
only based on the minor/major flag. For
example, if the query contains a context
specifying the key C minor, matches will be
found in all minor keys.

Search launch configurations can be reused, edited and deleted at any time. Refer to section
Launch Configurations for further details.

Search Result Presentation

Search results will be displayed in the Search view, which is located at the bottom of the MPS
IDE by default. Search results are presented hierarchically in a table. For each search result,

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

113

the workspace-relative file path, stream numbers, measures, beats (i.e. zero-based point of
time in the corresponding measures) and absolute time is displayed as shown in the following
screenshot:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

114

Music Analysis

An extensive music analysis framework was developed as part of MPS, which facilitates
statistical and musicological analyses.

There are a number of motivations for the development of the MPS analysis tool:

• Due to the design of the underlying context-based model, new analysis methods can be
developed which benefit from the available context information. Not only explicit information,
but also implicit and contextual data can be taken into account and relations between
individual context layers can be explored easily.

• Once certain analysis algorithms are developed, they can be applied not only to one musical
piece, but also easily to hundreds or thousands of pieces. In this way, interesting results can
be obtained by using the advantages of computers. In this way, human researches can be
disburdened from laborious manual work.

• By using the processing capabilities of computers, statistical commonalities and distinctive
features of musical compositions can be explored.

• MPS does not require the knowledge of programming skills. Users only have to provide
MIDI and/or MusicXML files. The system produces output files in CSV format which can be
opened with any regular spreadsheet application.

• MPS also generates comprehensible graphical plots and charts from the analysis results,
which can be viewed directly in MPS or can be exported in the form of PDF analysis reports.

• By interpreting musical analysis results, insights can be gained into characteristic properties
of individual pieces, composers and styles.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

115

Analysis Scopes

To analyze musical compositions, one or more files containing symbolic music data in MIDI
or MusicXML format have to be provided. The analysis and export process is configurable.
Different analysis scopes are possible. Either a single piece, a collection of pieces or a corpus
of pieces can be analyzed.

The first musical analysis scope to be introduced is the single piece scope. It is used for gaining
insights about a specific musical composition by performing either a global analysis or a voice-
specific analysis of the piece. It is also possible to combine the aforementioned analysis modes.
Furthermore musically meaningful sections can manually be marked in the score in order to
perform section-wise analysis, which is optionally combinable with voice-wise analysis.

Collection analysis is suitable for comparing multiple musical pieces among each other. For
this purpose, analysis results are shown next to each other in combined representations.
Corpus analysis goes even one more step further, allowing to compare multiple collections of
compositions, e.g. folders containing multiple compositions of individual composers.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

116

Analyzing Music

To start analyzing music, simply select a file or folder and click the button

in the toolbar. Another possibility is invoking the context menu by using a right click and
choosing Run As → MPS Analysis Run. If a file or folder is analyzed for the first time, a
corresponding launch configuration will be opened. Adjust the configuration as desired and then
click Apply and/or Run to start the analysis process. See section Configuring Music Analysis for
more details.

The progress of the analysis process will be shown in the Progress view, which is located at the
bottom of the application by default.

Folders with the name schema <analyzed file or folder>_Analysis will be created
for each analyzed file or folder. The results will be stored in these folders in the form of CSV
files. These contain column names in the first line/row and analysis result values in the following
lines/rows.

Exploring Analysis Results

There are multiple options for viewing and exploring analysis results. One option is to view the
raw analysis data directly or in a spreadsheet editor. To view raw analysis data, follow these
steps:

• To view a CSV file in raw text format, right-click on a CSV file and choose Open With → Text
Editor.

• To view a CSV file in a spreadsheet editor such as Excel, OpenOffice or Numbers, select
Open With → System Editor. This will open the application which is associated with the .csv
file extension in your operating system.

A more comfortable option is to use the Analysis Result Browser provided by MPS. To open it,
right-click an analysis folder and and choose Open Analysis View from the context menu:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

117

The analysis result view will be shown. To initialize the view with data, select an arbitrary
folder containing analysis results. Once the view is associated with a data set, CSV files
can be selected on the left hand side of the view. MPS will display the raw CSV data and a
corresponding plot or graph depending on the content of the selected CSV file.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

118

The generated charts can be exported as file. To export a chart, right-click on the graphic and
select Export Chart to File. After specifying the destination, the file will be generated. Currently,
the following image formats are supported:

• BMP
• JPEG
• PNG

Configuring Music Analysis

The analysis process can be configured by adjusting a so called run configuration.
A run configuration is automatically created when a file or folder is initially analyzed.
To change run configurations later, click the black arrow next to the button

in the toolbar and click Run Configurations.... The following window will open:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

119

You can either search for an existing run configuration to modify or create a new configuration
by clicking the button

.
The following parameters can be set:
Parameter Description

Resource Path Workspace-relative path to a file or folder to be
analyzed.

Analyze Implicit Harmonies Attempt to derive harmonies by analyzing
simultaneously audible pitches in the piece.

Interval Leap Rest Duration Threshold Specifies the impact of rests between notes
for the interval leap detection algorithm. If the
value is empty, every rest resets the algorithm,
i.e. no interval leaps are detected across
rests. In case the value is 0, interval leaps are
detected across all rests. If the value is any
other positive fraction (e.g. 1/4), the algorithm
is reset in case rests longer than the given
fraction are detected.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

120

Export Analysis Log Files If enabled, detailed log files are exported.

Export Analysis Results for Individual Files If multiple files are analyzed (collection or
corpus scope) and this option is enabled,
detailed analysis results for each file are
exported.

Export Analysis Results for Individual Streams Indicates whether individual analysis results for
each stream (voice) should be exported.

Progression Graph Label Mode Configures how edges in progression graphs
(e.g. rhythmic progressions, pitch progressions
or harmonic progressions) should be labeled.
Occurrence Count displays how often a
progression was encountered. Measure
Numbers shows the measure number in
which the corresponding transition was
detected. Markov Model displays the markov
model probabilities for each transition. As an
example, a harmonic progression graph is
shown below with measure number labels.
Refer to section Generating Progression
Graphs for more details.

Section Start Times Provide a comma-separated list of measure
numbers if a single piece should be analyzed
section-wise. The first measure does not need
to be supplied. Example: 5,17,33. If this field
is left empty, the piece is considered to have
one large section.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

121

The figure shows the harmonic progression graph of Ludwig van Beethoven’s Piano Sonata No.
14 in C# minor, first movement. The numbers specify the measures in which the corresponding
chord change was detected. The colors of the chords encode the consonance or dissonance of
the relevant chord (green corresponds to consonant and red to dissonant). The graph reveals
which harmonic progressions are only used once and which are used multiple times. The latter
are easily identifiable due to comma-separated enumerations of measure numbers in which the
corresponding transitions occur.

Analysis launch configurations can be reused, edited and deleted at any time. Refer to section
Launch Configurations for further details.

Generating Analysis PDF Reports

Analysis results can also be exported in the form of PDF reports. To invoke a report
generation, simply select an analysis data folder of your choice and click the button

in the toolbar. Note that you must have a LaTeX environment installed to render analysis
reports, which is described in sections LaTeX Installation and LaTeX Configuration in the
installation chapter. The PDF will be generated in a directory next the the analysis folder with
the name <Analysis Folder Name>_Report.

Analysis Report PDF Settings

To configure the contents of analysis report PDFs, navigate the the corresponding preference
page:

1. Open the MPS Preferences
1. On Windows and Linux: In the menu bar, choose Window → Preferences
2. On Mac: In the menu bar, choose Music Processing Suite (application menu) →

Preferences
2. Navigate to Music Processing Suite → Analysis Reports

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

122

The following settings are available:
Parameter Description

LaTeX Directory Path to a LaTeX installation containing the
LaTeX executables.

Export Stream-specific Results Configures whether the PDF report should
contain analysis results for individual streams.

Export Stream-specific Results If set, the PDF report will contain individual
analysis results for each section. This only
works if sections were defined and a section-
specific analysis was performed.

Maximum number of table rows Sets the maximum number of table rows to be
displayed in analysis report PDFs. The default
is 100. If set to 0, all rows are printed.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

123

Generating Progression Graphs

When analyzing music with MPS, progression graphs of the following musical aspects are
generated:

• Harmonic Progressions
• Rhythmic Progressions
• Pitch Progressions
• Lyric Progressions

Depending on the setting Progression Graph Label Mode described in the previous section, the
edges in the resulting graphs will either have

• Occurrence Counts
• Measure Numbers or
• Markov Model Probabilities

as labels. An example with measure numbers was already presented in the previous section.
Here is a harmonic progression graph of Hey Jude by the Beatles with occurrence count labels
visualizing how often the corresponding transition was found in the piece:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

124

F

C

4

C7

4

Bb
4

F7
6

Eb

7

4

6

10

11

Bb/A

4 2

4

Gm

4

Gm/F

4
C/E

4

4

7

And this is the same harmonic progression graph as a Markov model with probability labels:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

125

F

C

4/25

C7

4/25

Bb

4/25

F7
6/25

Eb

7/25

0.4

0.6

1

11/15

Bb/A

4/15 1/3

2/3

Gm

1

Gm/F

1
C/E

1

1

1

The graphs are exported for each stream separately and can be found in the respective
subfolders:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

126

Corresponding PDF files will be generated automatically if GraphViz is installed and configured
as described in GraphViz Installation.

If the graphs should be included in analysis report PDF files, the option Export Stream-specific
Analysis Results needs to be activated in the preferences as shown in the previous section.

Analysis Features

The following table lists all 120 musical features which can be analyzed with MPS.
Feature Type Exported Data

Total Number of Notes Number Total Number of Notes

Total Number of Rests Number Total Number of Rests

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

127

Instrument Duration
Distribution

Relative Distribution Instrument, Relative Quantity

Note Density Percentage Note Density

Note Duration Average Average Note Duration Average

Note Duration Standard
Deviation

Standard Deviation Note Duration Standard
Deviation

Note Duration Distribution Relative Distribution Note Duration, Relative
Quantity

Note Duration Distribution
Dependent on Beat

Relative Distribution Beat, Note Duration, Relative
Quantity

Note Duration Distribution
Dependent on Beat (Absolute)

Absolute Distribution Beat, Note Duration, Absolute
Quantity

Rest Duration Average Average Rest Duration Average

Rest Duration Standard
Deviation

Standard Deviation Rest Duration Standard
Deviation

Rest Duration Distribution Relative Distribution Rest Duration, Relative
Quantity

Rest Duration Distribution
Dependent on Beat

Relative Distribution Beat, Rest Duration, Relative
Quantity

Beat Distribution Relative Distribution Beat, Relative Quantity

Beat Distribution Absolute Distribution Beat, Absolute Quantity

Time Signature Distribution Relative Distribution Time Signature, Relative
Quantity

Loudness over Time Values Over Time Time, Loudness

Loudness over Time Values Over Time Measure, Loudness

Loudness Distribution Relative Distribution Loudness, Relative Quantity

Minimum Pitch String Minimum Pitch

Maximum Pitch String Maximum Pitch

Minimum Pitch over Time Values Over Time Time, Minimum Pitch

Minimum Pitch over Time Values Over Time Measure, Minimum Pitch

Maximum Pitch over Time Values Over Time Time, Maximum Pitch

Maximum Pitch over Time Values Over Time Measure, Maximum Pitch

Pitch Distribution Relative Distribution Pitch, Relative Quantity

Piano Roll Values Over Time Time, Pitch, Duration

Piano Roll Values Over Time Measure, Pitch, Duration

Interval Leap Average Average Interval Leap Average

Interval Leap Standard
Deviation

Standard Deviation Interval Leap Standard
Deviation

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

128

Interval Leap Distribution Relative Distribution Interval Leap, Relative
Quantity

Interval Leap Distribution
Dependent on Beat

Relative Distribution Beat, Interval Leap, Relative
Quantity

Interval Leaps over Time Values Over Time Time, Interval Leap, Absolute
Quantity

Interval Leaps over Time Values Over Time Measure, Interval Leap,
Absolute Quantity

Number of Simultaneously
Audible Notes Average

Average Number of Simultaneously
Audible Notes Average

Number of Simultaneously
Audible Notes Standard
Deviation

Standard Deviation Number of Simultaneously
Audible Notes Standard
Deviation

Number of Simultaneously
Audible Notes Distribution

Relative Distribution Number of Simultaneously
Audible Notes, Relative
Quantity

Pitch Combination Distribution Relative Distribution Pitch Combination, Relative
Quantity

Pitch Combination Distribution
(Absolute)

Absolute Distribution Pitch Combination, Absolute
Quantity

Pitch Combination Duration
Distribution

Relative Distribution Pitch Combination, Relative
Quantity

Pitch Combination Duration
Distribution (Absolute)

Absolute Distribution Pitch Combination, Duration

Simultaneously Audible
Interval Distribution

Relative Distribution Interval, Relative Quantity

Simultaneously Audible
Interval Distribution Dependent
on Beat

Relative Distribution Beat, Interval, Relative
Quantity

Dissonance Average Average Dissonance Average

Dissonance Standard
Deviation

Standard Deviation Dissonance Standard
Deviation

Dissonance Distribution Relative Distribution Dissonance, Relative Quantity

Dissonance Distribution
Dependent on Beat

Relative Distribution Beat, Dissonance, Relative
Quantity

Dissonance over Time Values Over Time Time, Dissonance

Dissonance over Time Values Over Time Measure, Dissonance

Keys over Time Values Over Time Time, Key

Keys over Time Values Over Time Measure, Key

Key Distribution Relative Distribution Key, Relative Quantity

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

129

Circle of Fifths Distance
Distribution of Keys

Relative Distribution Circle of Fifths Distance,
Relative Quantity

Harmonies over Time Values Over Time Time, Harmony

Harmonies over Time Values Over Time Measure, Harmony

Harmony Distribution Relative Distribution Harmony, Relative Quantity

Harmony Distribution
(Simplified)

Relative Distribution Harmony, Relative Quantity

Chord Inversion Distribution Relative Distribution Inversion, Relative Quantity

Harmony Change Beat
Distribution

Relative Distribution Beat, Relative Quantity

Harmony Duration Distribution Relative Distribution Harmony Duration, Relative
Quantity

Circle of Fifths Distance
Distribution of Harmonies

Relative Distribution Circle of Fifths Distance,
Relative Quantity

Harmony Distribution
Dependent on Beat

Relative Distribution Beat, Harmony, Relative
Quantity

Harmony Distribution
Dependent on Duration

Relative Distribution Harmony Duration, Harmony,
Relative Quantity

Implicit Harmonies over Time Values Over Time Time, Implicit Harmony,
Inversion, Pitch Combination

Implicit Harmonies over Time
(Simplified)

Values Over Time Time, Implicit Harmony,
Inversion, Pitch Combination

Implicit Harmonies over Time Values Over Time Measure, Implicit Harmony,
Inversion, Pitch Combination

Implicit Harmonies over Time
(Simplified)

Values Over Time Measure, Implicit Harmony,
Inversion, Pitch Combination

Implicit Harmony Distribution Relative Distribution Implicit Harmony, Relative
Quantity

Implicit Harmony Distribution
(Simplified)

Relative Distribution Implicit Harmony, Relative
Quantity

Harmony Change Beat
Distribution (Simplified)

Relative Distribution Beat, Relative Quantity

Implicit Harmony Duration
Distribution

Relative Distribution Harmony Duration, Relative
Quantity

Circle of Fifths Distance
Distribution of Implicit
Harmonies

Relative Distribution Circle of Fifths Distance,
Relative Quantity

Implicit Harmony Distribution
Dependent on Beat

Relative Distribution Beat, Implicit Harmony,
Relative Quantity

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

130

Implicit Harmony Distribution
Dependent on Beat
(Simplified)

Relative Distribution Beat, Implicit Harmony,
Relative Quantity

Implicit Harmony Distribution
Dependent on Duration

Relative Distribution Harmony Duration, Implicit
Harmony, Relative Quantity

Implicit Harmony Distribution
Dependent on Duration
(Simplified)

Relative Distribution Harmony Duration, Implicit
Harmony, Relative Quantity

Harmony Analysis over Time Values Over Time Time, Key, Harmony, Roman
Numeral (Classical), Roman
Numeral (Pop/Jazz)

Harmony Analysis over Time Values Over Time Measure, Key, Harmony,
Roman Numeral (Classical),
Roman Numeral (Pop/Jazz)

Chord Compliance Percentage Chord Compliance

Root Note Compliance Percentage Root Note Compliance

Bass Note Compliance Percentage Bass Note Compliance

Scale Compliance Relative to
Key

Percentage Scale Compliance Relative to
Key

Scale Compliance Relative to
Harmony

Percentage Scale Compliance Relative to
Harmony

Syllable Distribution Relative Distribution Syllable, Relative Quantity

Words over Time Values Over Time Start Time, End Time, Word

Words over Time Values Over Time Start Measure, End Measure,
Word

Word Distribution Relative Distribution Word, Relative Quantity

Sentence Parts over Time Values Over Time Start Time, End Time,
Sentence Part

Sentence Parts over Time Values Over Time Start Measure, End Measure,
Sentence Part

Sentences over Time Values Over Time Start Time, End Time,
Sentence

Sentences over Time Values Over Time Start Measure, End Measure,
Sentence

Sentence Sentiment Polarity
over Time

Values Over Time Start Time, End Time,
Sentence, Compound Polarity,
Very Negative Polarity,
Negative Polarity, Neutral
Polarity, Positive Polarity, Very
Positive Polarity

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

131

Sentence Sentiment Polarity
over Time

Values Over Time Start Measure, End Measure,
Sentence, Compound Polarity,
Very Negative Polarity,
Negative Polarity, Neutral
Polarity, Positive Polarity, Very
Positive Polarity

Loudness vs. Dissonance
Correlation

Correlation Correlation

Loudness vs. Sentiment
Polarity Correlation

Correlation Correlation

Dissonance vs. Sentiment
Polarity Correlation

Correlation Correlation

Aggregated Note Duration
Distribution

Aggregated Relative
Distribution

Note Duration, Relative
Quantity

Aggregated Rest Duration
Distribution

Aggregated Relative
Distribution

Rest Duration, Relative
Quantity

Aggregated Note Duration
Distribution Dependent on
Beat

Aggregated Relative
Distribution

Beat, Note Duration, Relative
Quantity

Aggregated Beat Distribution Aggregated Relative
Distribution

Beat, Relative Quantity

Aggregated Pitch Distribution Aggregated Relative
Distribution

Pitch, Relative Quantity

Aggregated Interval Leap
Distribution

Aggregated Relative
Distribution

Interval Leap, Relative
Quantity

Aggregated Interval Leap
Distribution Dependent on
Beat

Aggregated Relative
Distribution

Beat, Interval Leap, Relative
Quantity

Aggregated Dissonance
Distribution

Aggregated Relative
Distribution

Dissonance, Relative Quantity

Aggregated Dissonance
Distribution Dependent on
Beat

Aggregated Relative
Distribution

Beat, Dissonance, Relative
Quantity

Aggregated Simultaneously
Audible Interval Distribution

Aggregated Relative
Distribution

Interval, Relative Quantity

Aggregated Simultaneously
Audible Interval Distribution
Dependent on Beat

Aggregated Relative
Distribution

Beat, Interval, Relative
Quantity

Aggregated Time Signature
Distribution

Aggregated Relative
Distribution

Time Signature, Relative
Quantity

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

132

Aggregated Key Distribution Aggregated Relative
Distribution

Key, Relative Quantity

Aggregated Harmony
Distribution

Aggregated Relative
Distribution

Harmony, Relative Quantity

Aggregated Simplified
Harmony Distribution

Aggregated Relative
Distribution

Harmony, Relative Quantity

Aggregated Implicit Harmony
Distribution

Aggregated Relative
Distribution

Implicit Harmony, Relative
Quantity

Aggregated Simplified Implicit
Harmony Distribution

Aggregated Relative
Distribution

Implicit Harmony, Relative
Quantity

Aggregated Harmony Duration
Distribution

Aggregated Relative
Distribution

Harmony Duration, Relative
Quantity

Aggregated Harmony Change
Beat Distribution

Aggregated Relative
Distribution

Beat, Relative Quantity

Aggregated Harmony
Distribution Dependent on
Beat

Aggregated Relative
Distribution

Beat, Harmony, Relative
Quantity

Aggregated Harmony
Distribution Dependent on
Duration

Aggregated Relative
Distribution

Duration, Harmony, Relative
Quantity

Aggregated Circle of Fifths
Distance Distribution of Keys

Aggregated Relative
Distribution

Circle of Fifths Distance,
Relative Quantity

Aggregated Circle of Fifths
Distance Distribution of
Harmonies

Aggregated Relative
Distribution

Circle of Fifths Distance,
Relative Quantity

Aggregated Circle of Fifths
Distance Distribution of Implicit
Harmonies

Aggregated Relative
Distribution

Circle of Fifths Distance,
Relative Quantity

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

133

Algorithmic Composition

MPS features an algorithmic composition system which generates music based on statistical
criteria.

Generating Compositions

To start generating a composition, it is recommended to create a new folder by right-clicking on
a project and selecting New → Folder.

Next, select the created folder and click on the algorithmic composition button:

Algorithmic Composition Launch Configurations

A launch configuration will be created and opened automatically:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

134

Here you can enter the desired number of measures, number of voices and the instruments that
should be used in the composition. If you don’t specify any instruments here, instruments will be
selected randomly.

Furthermore, parameters for the evolutionary algorithm can be adjusted. It is recommended
to use a high crossover rate and a low mutation rate in order to prevent the algorithm from

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

135

converging too early on local optima (as opposed to global optima, which are preferable).
Adjusting the number of generations, the population size or the number of offspring will
influence the time the algorithm takes to run. However, if these values are set too low, the
evolutionary algorithm might not be able to satisfy all optimization criteria.

Composer launch configurations can be reused, edited and deleted at any time. Refer to section
Launch Configurations for further details.

Fitness Function Configuration

The statistical criteria to be fulfilled are specified by means of a so called fitness function. The
fitness function can contain statistical criteria on a global level and multiple subsidiary levels.
Each musical piece to be generated is divided into an arbitrary number of sections, which in
turn contain individual voices. It is possible to specify musical criteria for the whole piece (global
level), for individual sections (section level) and for each voice in each section (voice or stream
level).

Note that the fitness function configuration must be performed at least once. Otherwise, the
evolutionary algorithm can not be run.

Open the fitness function configuration dialog by clicking the button Open Fitness Function
Configuration in the algorithmic composition launch configuration:

The user interface allows to add, edit and remove fitness functions on the global level, section
level and voice/stream level. The fitness function must contain at least one section and one

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

136

voice per section. In the example above, there is a global fitness function aiming for an overall
note density of 90%, as well as a section with one voice in which the distribution of note
durations is optimized.

The fitness function configuration will be stored in a file named
FitnessFunctionConfiguration.ff in the specified base directory for the generated
composition.

Creating Fitness Functions by Importing Analysis Results

The fitness function configuration dialog offers a button labeled Import Distributions from
CSV files which allows to construct fitness functions from MPS analysis results. Generating
compositions that have imported statistical values as target fitness function will effectively
result in a style copy of the analyzed compositions. Note that not all statistical features can
automatically be converted into a fitness function. Refer to chapter Music Analysis for more
details on analysis features.

Generating Compositions Algorithmically

After configuring an algorithmic composition run, click the Run button in the launch configuration
dialog. Progress will be reported in the corresponding Progress view, which is located at
the bottom of the application by default. Depending on your configuration, evolutionary
algorithm runs might take quite a long time. The results will be saved in a subdirectory named
ComposerResults in the specified base directory for the generated composition. The resulting
composition file is named SectionWiseComposition.mcl and can be converted into a score and/
or MIDI file as described in section Transforming Compositions to Scores.

Composition Crossover

Composition crossover combines musical material of an arbitrary number of compositions to a
new composition. This is achieved by recombining context tree composition models using the
evolutionary algorithm described before. The algorithm is configured with a very high crossover
rate (close or equal to 100%) and uses an automatically generated fitness function which
optimizes the resulting context tree model to contain about the same ratio of tree nodes from
each input composition.

To start a composition crossover run, select at least two compositions in your workspace:

Open the context menu with a right click and select Run As → MPS Composition Crossover:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

137

A launch configuration will automatically be created and the following dialog appears:

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

138

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

139

Specify the desired number of measures and voices. It is recommended to use a very
high crossover rate and a very low mutation rate. Adjusting the number of generations, the
population size and the number of offspring influences the time the algorithm takes to run.
However, if these values are set too low, the evolutionary algorithm might not be able to satisfy
all optimization criteria.

Crossover launch configurations can be reused, edited and deleted at any time. Refer to section
Launch Configurations for further details.

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

140

Troubleshooting

This section contains solutions to known issues.

Analysis Report Generation Fails with Fatal Error

If PDF generation fails with the following error:

Fatal error occurred, no output PDF file produced

In general, search for the first error in the console output to pinpoint the problem.

Possible fixes:

• Check whether all required LaTeX packages are installed as described in section LaTeX
Installation

• Check whether the AnalysisReport.tex file contains unescaped special characters.
If this is the case, please report this on the MPS mailing list. For example, in LaTeX the
following replacements must be performed:
• _ → _
• # → \#
• ° → $^\circ$ or \textdegree

(C) David Pace 2023. MPS is released under the End-User License
Agreement available at https://www.musicprocessing.net/license/license.html.

141

	Introduction
	Installation
	Overview
	Requirements
	Quick Installation Guide
	Java Installation
	How to Check if Java is Installed

	Music Processing Suite Installation
	Stand-alone Installation
	Installation Into an Existing Eclipse Instance via Update Site

	Optional Components
	LilyPond Installation
	LilyPond Configuration

	MuseScore Installation
	MuseScore Configuration

	Graphviz Installation
	Graphviz Configuration

	LaTeX Installation
	LaTeX Configuration

	CoreNLP Installation
	CoreNLP Configuration

	Quickstart Tutorial
	Creating Projects
	Creating Compositions
	Visualizing Context Tree Composition Models
	Visualizing Context Layer Composition Models
	Creating Scores and Lead Sheets
	Analyzing Compositions

	Context Layer Models
	Introductory Example
	Model Structure
	Instrumentation Context
	Metric Contexts
	Harmonic Contexts
	Rhythmic Contexts
	Pitch Contexts
	Loudness Contexts
	Lyrics
	Labels
	Custom Contexts

	Time Model
	Parallel Streams

	Composition Language and Context Tree Models
	Introductory Example
	Key Concepts
	Hierarchical Structures
	Inheritance
	Polymorphism
	Auto Expansion
	Modularization using Fragments

	Contexts
	Rhythms
	Examples
	Anacruses

	Time Signatures
	Tempo
	Instruments
	Available Instruments
	Instruments with Variable Pitches
	Untuned Percussion Instruments

	Instrument Definitions

	Pitches
	Scales
	Scale Definitions

	Loudness
	Harmonic Contexts
	Keys
	Harmonies
	Harmonic Progressions

	Lyrics
	Custom Contexts

	Context Modifiers
	Rhythmic Modifiers
	Augmentations and Diminutions
	Rhythmic Extensions
	Rhythmic Adjustments
	Rhythmic Insertions
	Rhythmic Displacements

	Pitch Modifiers
	Transpositions
	Inversions
	Parallel Intervals

	Harmonic Modifiers

	Context Generators
	Chord Generators
	Arpeggio Generators

	Control Structures
	Parallelizations
	Repetitions
	Conditions
	Iterations
	Sequences
	While-Loops
	Switches

	Expressions
	Literals
	Operators
	Type Conversions
	Function Calls

	Music Transformation and Visualization
	Rendering Context Tree Model Visualizations
	Rendering Context Layer Model Representations
	Visualization Options
	Transforming Compositions to Scores
	Score Generation Options

	Transforming Compositions to SuperCollider
	Executing SuperCollider Code

	Deriving Context Tree Models
	Launch Configurations

	Context-sensitive Search
	Formulating Search Queries
	Performing Context-sensitive Search
	Search Configuration
	Search Result Presentation

	Music Analysis
	Analysis Scopes
	Analyzing Music
	Exploring Analysis Results
	Configuring Music Analysis
	Generating Analysis PDF Reports
	Analysis Report PDF Settings

	Generating Progression Graphs
	Analysis Features

	Algorithmic Composition
	Generating Compositions
	Algorithmic Composition Launch Configurations
	Fitness Function Configuration
	Creating Fitness Functions by Importing Analysis Results
	Generating Compositions Algorithmically
	Composition Crossover

	Troubleshooting
	Analysis Report Generation Fails with Fatal Error

