
Music Processing Suite: A Software System for

Context-based Symbolic Music Representation,

Visualization, Transformation, Analysis and

Generation

Dissertation

submitted by

David M. Hofmann

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Institute for Musicology and Music Informatics
University of Music Karlsruhe

First Supervisor: Prof. Dr. Thomas A. Troge
Second Supervisor: Prof. Dr. Marlon Schumacher
External Supervisor: Prof. Dr. Meinard Müller
Date of Submission: August 9, 2018

Abstract

This dissertation documents the design and development of a software system for
symbolic music processing. Music Processing Suite is built on the foundation of
new music representation models, which allow specifying, analyzing and processing
compositions in a variety of musical dimensions. Instead of modeling music in terms
of sequences of notes and rests, the proposed models provide individual layers for
various musical aspects including instruments, meter, tempo, rhythms, multiple
pitch specification systems, hierarchical harmonic contexts and lyrics. Composers
can extend the model with arbitrary custom musical dimensions, resulting in music
representation models offering more possibilities than traditional scores do. Two
different model presentations, namely a time-based layer representation and a tree-
based representation, are introduced and corresponding transformation algorithms
are proposed. Furthermore, a corresponding language for music composition in
multiple musical dimensions is presented. Apart from basic music notation, the
language also offers possibilities to develop and form musical material and to utilize
control structures for algorithmic composition. The language is designed with the
objective of minimizing redundancy by means of reusing already specified musical
information. Further applications of the music model presented in this work are
music format transformations, context-dependent musical search functionality and
a framework for music analysis. Finally, an evolutionary algorithm approach for
generating music based on statistical criteria is proposed.

Acknowledgements

This dissertation project has been a life-enhancing experience for me and would not
have been possible without the support of the following people, whose contributions
I greatly appreciate.
First and foremost, I would like to acknowledge my gratefulness to Prof. Dr. Thomas
Troge for continuously supporting me throughout my studies at the University of
Music Karlsruhe and for numerous inspiring conversations on music, informatics and
artificial intelligence.
I would sincerely like to thank Prof. Dr. Marlon Schumacher for the excellent col-
laboration during my time as research assistant at the University of Music and for
the useful suggestions relating to this dissertation.
I am very grateful to Prof. Dr. Meinard Müller from the Audio Laboratories Erlangen
for agreeing to review this dissertation in the role of an external advisor and for
providing valuable feedback. I would also like to thank his colleague Frank Zalkow
for reviewing selected chapters of this work.
Thank you very much to my colleague Johannes Utzig, who provided valuable in-
sights on software development topics and supported me to get the automated soft-
ware build process running. I would also like to thank my friend Dr. Thomas Damian
for proofreading this dissertation.
I gratefully acknowledge a LGFG scholarship granted by the state of Baden-
Württemberg, with which the majority of this research project was funded.
Finally, I would like to express my deepest gratitude to my family and my friends,
who always supported me along the way. I would like to extend my gratefulness to
my loving and supportive girlfriend Jennifer, who also proofread this dissertation,
and her parents Petra and Mark for their constant efforts to support us whenever
possible.

Contents

List of Figures vi

List of Tables xii

Acronyms xv

1 Introduction 1

I Theory and Models 5

2 State of the Art 6
2.1 Music Representation . 6

2.1.1 Musical Instrument Digital Interface 6
2.1.2 MuseData . 10
2.1.3 Humdrum . 14
2.1.4 abc . 17
2.1.5 GUIDO . 18
2.1.6 LilyPond . 18
2.1.7 MusicXML . 19
2.1.8 music21 . 24
2.1.9 SARAH . 24

2.2 Computers and Creativity: An Overview 25
2.2.1 Computers as Tools in Creative Processes 26
2.2.2 Computer Models of Creativity 26
2.2.3 Constraints and Creativity . 28

2.3 Algorithmic Composition . 29
2.3.1 Historical Context . 29
2.3.2 Stochastic Processes . 31
2.3.3 Markov Models . 32
2.3.4 Generative Grammars . 36

i

2.3.5 Transition Networks . 40
2.3.6 Artificial Neural Networks . 43
2.3.7 Evolutionary Algorithms . 47

2.4 Summary . 57

3 Context Layer Composition Model 59
3.1 Motivation . 60
3.2 Introductory Example . 62
3.3 Model Structure . 62

3.3.1 Instrumentation Context . 64
3.3.2 Metric Contexts . 64
3.3.3 Harmonic Contexts . 64
3.3.4 Rhythmic Contexts . 64
3.3.5 Pitch Contexts . 65
3.3.6 Loudness Contexts . 65
3.3.7 Lyrics . 65
3.3.8 Musical Labels . 65
3.3.9 Custom Contexts . 65

3.4 Time Model . 66
3.5 Parallel Streams . 67
3.6 Stream Sequencers and Stream Events 67
3.7 Key Benefits and Versatility of the Model 71
3.8 Summary . 72

4 Context Tree Model and Composition Language 73
4.1 Motivation . 73
4.2 Overview . 74
4.3 Introductory Example . 74
4.4 Key Concepts . 77

4.4.1 Hierarchical Structures . 77
4.4.2 Inheritance . 78
4.4.3 Polymorphism . 82
4.4.4 Auto Expansion . 82
4.4.5 Modularization using Fragments 84

4.5 Contexts . 86
4.5.1 Rhythms . 86
4.5.2 Meter . 89
4.5.3 Tempo . 91
4.5.4 Instruments . 91

ii

4.5.5 Pitches . 94
4.5.6 Scales . 97
4.5.7 Loudness . 100
4.5.8 Harmonic Contexts . 101
4.5.9 Lyrics . 107
4.5.10 Custom Contexts . 108

4.6 Context Modifiers . 109
4.6.1 Rhythmic Modifiers . 109
4.6.2 Pitch Modifiers . 115
4.6.3 Harmonic Modifiers . 119

4.7 Context Generators . 120
4.7.1 Chord Generators . 120
4.7.2 Arpeggio Generators . 123

4.8 Control Structures . 126
4.8.1 Parallelizations . 126
4.8.2 Repetitions . 127
4.8.3 Conditions . 129
4.8.4 Iterations . 131
4.8.5 Sequences . 133
4.8.6 While-Loops . 135
4.8.7 Switches . 136

4.9 Expressions . 137
4.9.1 Literals . 138
4.9.2 Operators . 138
4.9.3 Type Conversions . 139
4.9.4 Function Calls . 140

4.10 Implementation Details . 141
4.10.1 Composition Domain Model 141
4.10.2 Domain-Specific Composition Language 144

4.11 Summary . 144

II System Applications 146

5 Model Transformations 147
5.1 Transformation Infrastructure Overview 147
5.2 Transforming Context Tree Models to Context Layer Models 148
5.3 Transforming Context Layer Models to Score Representations 153

5.3.1 LilyPond Compiler . 153

iii

5.4 Transforming Context Layer Models to SuperCollider 155
5.4.1 Immediate Compilation and Execution 156

5.5 Transforming MIDI Files to Context Layer Models 158
5.6 Transforming MusicXML Files to Context Layer Models 158
5.7 Deriving and Compressing Context Tree Composition Models 159

5.7.1 Related Work . 160
5.7.2 Compression Algorithm . 162
5.7.3 Future Work . 167

5.8 Graphical User Interface . 170
5.9 Summary . 170

6 Context-based Corpus Search 172
6.1 Motivation . 172
6.2 Formulating Musical Search Queries 173
6.3 Search Methodology . 174
6.4 Search Query Context Layer Models 175
6.5 Search Algorithm . 175
6.6 Search Result Presentation . 177
6.7 Results . 177
6.8 Conclusion . 184

7 Music Analysis 185
7.1 Motivation . 185
7.2 Analysis Scopes . 186
7.3 Rhythmic Analysis . 187

7.3.1 Note Duration Analysis . 187
7.3.2 Note Density Analysis . 188
7.3.3 Beat Analysis . 189
7.3.4 Combined Note Duration and Beat Analysis 190

7.4 Pitch Analysis . 191
7.4.1 Piano Roll Representations . 191
7.4.2 Pitch Distributions . 192
7.4.3 Interval Analysis . 193
7.4.4 Dissonance Analysis . 196
7.4.5 Harmonic Analysis . 198

7.5 Progression Analysis . 202
7.5.1 Harmonic Progression Graphs 202
7.5.2 Lyric Progression Graphs . 206

7.6 Comparative Analysis of Large Corpora 206

iv

7.6.1 Comparing Composition Collections 206
7.6.2 Analyzing Large Corpora . 208

7.7 Conclusion . 212

III Automated Composition 213

8 Evolutionary Composition Algorithm 214
8.1 Motivation . 214
8.2 Composition vs. Improvisation . 215
8.3 Composition Algorithm . 216

8.3.1 Overview . 216
8.3.2 Fitness Function . 217
8.3.3 Multi-objective Optimization 220
8.3.4 Crossover Operators . 222
8.3.5 Mutation Operators . 223
8.3.6 Parameters . 225
8.3.7 Genetic Programming Specifics 226
8.3.8 Example Evolutionary Algorithm Run 227

8.4 Applications . 230
8.4.1 Composition Crossover and Variations 230
8.4.2 Style Imitations . 236
8.4.3 Generating Compositions with Predefined Structures 239
8.4.4 Generating Compositions with Multiple Sections 242

8.5 Summary . 254

IV Conclusions and Appendices 255

9 Conclusions 256

Bibliography 258

A Contents of the Accompanying CD 273

B Code Examples 274
B.1 Composition Language Grammar . 274
B.2 MusicXML Code Example . 284

v

List of Figures

1.1 Overview of Music Processing Suite components 2
1.2 Screenshot of the MPS Application 3

2.1 Score and piano roll representations of MIDI events in J. S. Bach,
Sinfonia 1, BWV 787, mm. 1–2 . 8

2.2 W. A. Mozart, Piano Sonata No. 11 in A major, K. 331/300i, Mv. 3
(“Alla Turca”), mm. 98–102 . 12

2.3 J. S. Bach, The Art of Fugue, BWV 1080, subject 15
2.4 Score illustrating the harmonic progression specified in Listing 2.4 . . 16
2.5 The Beatles, Yesterday, m. 1, vocal part 20
2.6 Logical structure of the MusicXML score representation shown in

Listing 2.9 . 23
2.7 Harmonic progression graph and corresponding Markov model of Yes-

terday by the Beatles . 34
2.8 Transition network for simple natural language expressions 40
2.9 Illustrations of various artificial neural network topologies 45
2.10 Flow chart illustrating the basic structure of an evolutionary algorithm 49
2.11 Roulette wheel selection in evolutionary algorithms 49
2.12 Genetic algorithm one point crossover 50
2.13 Genetic algorithm bit flip mutation 50
2.14 Illustration of subtree crossover in genetic programming 55

3.1 Ludwig van Beethoven, Symphony No. 5 in C Minor, Op. 67, Mv. I,
motif . 60

3.2 Legend illustrating the color scheme of model elements presented in
this dissertation . 62

3.3 Score and context layer model of Hey Jude by the Beatles, mm. 1–4 . 63
3.4 Score and context layer model of Beethoven’s Piano Sonata No. 14

in C# minor, Op. 27, No. 2, Mv. I, mm. 1–4 68
3.5 Segmentation of a context layer model into stream events 70

vi

4.1 Score and context tree model of Beethoven’s Symphony No. 5 in C Mi-
nor, Op. 67, Mv. I, mm. 1–4, violin part 75

4.2 Simple class hierarchy . 78
4.3 Queen, Bohemian Rhapsody, mm. 1–4 79
4.4 Context tree model of Queen’s Bohemian Rhapsody, mm. 1–2 80
4.5 Context tree model of Queen’s Bohemian Rhapsody, mm. 1–4 81
4.6 Score and context tree model of Beethoven’s Symphony No. 9, Mv. IV,

mm. 543–550, soprano part . 83
4.7 Score and context tree model of the English horn theme from An-

tonin Dvorak’s Symphony No. 9 in E minor (“From the New World”),
Op. 95, B. 178, Mv. II . 84

4.8 Redundancy-optimized context tree model of the English horn theme
from Antonin Dvorak’s Symphony No. 9 in E minor (“From the New
World”), Op. 95, B. 178, Mv. II . 85

4.9 Score and context tree model of the the first measures of Vivaldi’s
Concerto No. 1 in E major, Op. 8, RV 269 89

4.10 Score and context tree model of a rhythm in two different metric
contexts . 90

4.11 Score and context tree model of an excerpt from Boléro by Maurice
Ravel . 92

4.12 Score and context tree model of W. A. Mozart’s Piano Sonata No.
16 in C major, K. 545, mm. 1–2, right hand part 96

4.13 Score and context tree model of Bedřich Smetana’s Moldau theme
from Vltava, JB 1:112/2 . 98

4.14 Score and context tree model of the opening oboe theme from W. A.
Mozart’s Flute and Harp Concerto in C major, K. 299/297c 102

4.15 Schematic context tree model of W. A. Mozart’s Symphony No. 40 in
G minor, K. 550, Mv. I demonstrating hierarchically arranged global
and local keys . 103

4.16 Score and context tree model demonstrating a harmonic progression
in the context of a global key . 104

4.17 Context tree model demonstrating the definition of a harmonic pro-
gression and a corresponding harmonic rhythm 106

4.18 Score and context tree model of the first measures of Hey Jude by
the Beatles demonstrating the specification of lyrics 108

4.19 Context tree model introducing a new custom context type to describe
moods of individual sections . 109

vii

4.20 Context tree model of an excerpt from J. S. Bach’s The Art of Fugue,
BWV 1080, Contrapunctus VII, in which diminution and inversion is
applied . 111

4.21 Score of an excerpt from of J. S. Bach’s The Art of Fugue, BWV 1080,
Contrapunctus VII . 112

4.22 Context tree model of Steve Reich’s Clapping Music, in which itera-
tive rhythmic displacements are utilized 114

4.23 Score of Steve Reich’s Clapping Music 116
4.24 Score and context tree model of the guitar introduction of Deep Pur-

ple’s Smoke on the Water . 118
4.25 G minor blues scale . 119
4.26 Score and context tree model demonstrating various harmony modi-

fications . 120
4.27 Context tree model demonstrating a chord generator and the resulting

score . 121
4.28 Context tree model using an arpeggio generator and the resulting score123
4.29 Score and context tree model of J. S. Bach, Prelude in C Major,

BWV 846, mm. 1–4 . 125
4.30 Score and context tree model of a simultaneously played excerpt from

Boléro by Maurice Ravel . 126
4.31 Score and context tree model of a simple drum groove containing

nested repetitions . 128
4.32 Context tree model and resulting drum introduction of Coldplay’s In

My Place . 130
4.33 Context tree model using an iteration to produce a G minor blues scale.132
4.34 Score and context tree model of a sequence from J. S. Bach’s Invention

No. 4 in D minor, BWV 775, mm. 7–10 133
4.35 Context tree model and resulting score demonstrating a while loop

to generate randomly pitched notes 135
4.36 Context tree model and resulting score demonstrating a switch control

structure . 136
4.37 Screenshot of the editor for the musical context composition language 145

5.1 Music Processing Suite transformation infrastructure 148
5.2 Context tree model of W. A. Mozart, Piano Sonata No. 16 in C

major, K. 545, mm. 1–4 and the resulting context and parallelization
stacks in the compiler during the transformation to a context layer
model . 150

viii

5.3 Intermediate context layer model of W. A. Mozart, Piano Sonata
No. 16 in C major, K. 545, mm. 1–4 152

5.4 Context layer model of W. A. Mozart, Piano Sonata No. 16 in C
major, K. 545, mm. 1–4 . 152

5.5 Abstract score model structure . 153
5.6 Score of W. A. Mozart, Piano Sonata No. 16 in C major, K. 545,

mm. 1–4 . 154
5.7 Three representations of Frédéric Chopin, Étude Op. 10, No. 12 in C

minor (Revolutionary Étude), mm. 1–4 157
5.8 Context layer model of J. S. Bach, Sinfonia 1, BWV 787, mm. 1–2,

resulting from the MusicXML code in Appendix B.2 160
5.9 Huffman coding tree illustrating the construction of a possible code

for the input sequence abcabcadae 161
5.10 Ludwig van Beethoven, Piano Sonata No. 21 in C major, Op. 53

(“Waldstein”), mm. 1–8 . 163
5.11 Redundant context tree model of Ludwig van Beethoven, Piano Sonata

No. 21 in C major, Op. 53 (“Waldstein”), mm. 1–8 164
5.12 Node matrix used for computing the hierarchical tree arrangement of

the compressed model . 165
5.13 Context tree model of Ludwig van Beethoven, Piano Sonata No. 21

in C major, Op. 53 (“Waldstein”), mm. 1–8, after applying auto ex-
pansion optimizations . 166

5.14 Context tree model of Ludwig van Beethoven, Piano Sonata No. 21
in C major, Op. 53 (“Waldstein”), mm. 1–8, after optimizing the tree
structure utilizing inheritance . 168

5.15 Context tree model of Ludwig van Beethoven, Piano Sonata No. 21
in C major, Op. 53 (“Waldstein”), mm. 1–8, after extracting fragments169

5.16 Toolbar of the graphical Music Processing Suite user interface 170

6.1 Ludwig van Beethoven, Symphony No. 5 in C Minor, Op. 67, Mv. I,
motif . 173

6.2 Overview of the context-based search infrastructure 174
6.3 Search result presentation in the graphical user interface 177

7.1 Analysis scopes . 187
7.2 Note duration distribution of Ludwig van Beethoven’s Piano Sonata

No. 14 in C# minor . 188

ix

7.3 Beat distribution visualizing the relative frequencies of note onset
times relative to the beginning of the respective measures in Beethoven’s
Piano Sonata No. 14 in C# minor, Mv. 1 189

7.4 Note duration distribution dependent on beats of Ludwig van Beethoven’s
Piano Sonata No. 14 in C# minor, Mv. 1 190

7.5 Voice-specific note duration distribution dependent on beats of Lud-
wig van Beethoven’s Piano Sonata No. 14 in C# minor, Mv. 1 191

7.6 Piano roll representation of Beethoven’s Piano Sonata No. 14 in C#
minor, Mv. 1 . 192

7.7 Pitch distribution of Beethoven’s Piano Sonata No. 14 in C# minor,
Mv. 1 . 193

7.8 Interval Leap Analysis . 194
7.9 Interval leap distribution of Beethoven’s Piano Sonata No. 14 in C#

minor, Mv. 1 . 194
7.10 Beat-dependent interval leap distribution of Beethoven’s Piano Sonata

No. 14 in C# minor, Mv. 1 . 195
7.11 Dissonance values of simultaneously audible intervals within two octaves197
7.12 Rhythm representing the ratio 3 : 2 198
7.13 Dissonance plot of Beethoven’s Piano Sonata No. 14 in C# minor,

Mv. 1 . 199
7.14 Harmony distribution of Beethoven’s Piano Sonata No. 14 in C# mi-

nor, Mv. 1 . 200
7.15 Beat-dependent harmony distribution of Beethoven’s Piano Sonata

No. 14 in C# minor, Mv. 1 . 201
7.16 Chord progression graph of Beethoven’s Piano Sonata No. 14 in C#

minor, Mv. 1 . 203
7.17 Harmonic progression graph of Paul Desmond’s Take Five projected

onto the circle of fifths . 204
7.18 Graph visualizing lyric progressions of the first two verses in Yesterday

by the Beatles . 205
7.19 Aggregated note duration distribution of the 24 preludes in Johann

Sebastian Bach’s The Well-Tempered Clavier, Book I 207
7.20 J. S. Bach, Prelude No. 15 in G Major, BWV 860, m. 1 207
7.21 Aggregated key distribution of the 24 preludes in Johann Sebastian

Bach’s The Well-Tempered Clavier, Book I 208
7.22 Aggregated note duration distributions analyzed from a large corpus

containing compositions of various composers 209

x

7.23 Aggregated beat distributions analyzed from a large corpus contain-
ing compositions of various composers 210

7.24 Aggregated interval leap distributions analyzed from a large corpus
containing compositions of various composers 211

8.1 Flowchart depicting the basic structure of the evolutionary composi-
tion algorithm . 216

8.2 Comparison between two beat distribution histograms 219
8.3 Node crossover between Beethoven’s Symphony 5 motif and Steve

Reich’s Clapping Music . 223
8.4 Graph illustrating a small-scale evolutionary process 229
8.5 Manually compiled model recombining musical fragments of eleven

different compositions . 232
8.6 User interface to configure the evolutionary algorithm for composition

crossover . 233
8.7 Context tree model of a composition generated by the evolutionary

algorithm by recombining existing compositions 234
8.8 Score of a composition generated by the evolutionary algorithm by

recombining existing compositions . 235
8.9 Methodology applied to generate style imitations 238
8.10 Style imitation of W. A. Mozart, Piano Sonata No. 16 in C major,

K. 545, mm. 1–4, generated by the evolutionary algorithm 238
8.11 Context tree model of a template composition for a blues 240
8.12 Context tree model of a blues composition generated by the evolu-

tionary algorithm . 241
8.13 Blues composition generated by the evolutionary algorithm 242
8.14 Sections with individual statistical attributes in W. A. Mozart’s Piano

Sonata No. 16 in C major, K. 545 243
8.15 Fitness function defining statistical target features on three different

hierarchy levels . 243
8.16 Graphical user interface for section-wise composition generation . . . 245
8.17 Folder structure containing CSV files for target features and distri-

butions . 246
8.18 Circle of fifths distance distribution used to generate harmonic pro-

gressions . 248
8.19 Target note duration distributions for the first section 249
8.20 Target beat distributions for the first section 250
8.21 Target note duration distributions for the second section 251
8.22 Target beat distributions for the second section 252

xi

8.23 Composition generated by the evolutionary algorithm containing two
sections with different statistical and musical properties 253

xii

List of Tables

2.1 Encoding of common MIDI events . 7
2.2 MIDI meta events . 9
2.3 Selection of MuseData codes . 13
2.4 Markov transition matrix of harmonic progressions in Yesterday by

the Beatles . 35
2.5 Chomsky hierarchy . 37
2.6 Transition network types and corresponding grammars 41

3.1 Stream events produced by a stream sequencer segmentation shown
in Figure 3.5 . 69

4.1 Note and rest duration syntax . 86
4.2 Rhythm syntax examples . 88
4.3 Instrument definition parameters . 94
4.4 MIDI note numbers and octave numbers according to scientific pitch

notation . 95
4.5 Pitch syntax . 96
4.6 Pitch sequence parameters . 97
4.7 List of scales provided by the Music Processing Suite library 99
4.8 Loudness specification syntax . 101
4.9 Harmony additions . 105
4.10 Rhythmic adjustment modifier parameters 112
4.11 Rhythmic insertion modifier parameters 113
4.12 Rhythmic displacement modifier parameters 113
4.13 Transposition modifier parameters . 116
4.14 Parallel interval modifier parameters 119
4.15 Chord generator parameters . 122
4.16 Sequence control structure parameters 134
4.17 Expression language literals . 138
4.18 Expression language operators ordered by priority 138

xiii

4.19 Implicit type conversion rules . 140
4.20 Table of available functions . 140
4.21 Type cast specifications . 142

5.1 Default context values . 149

6.1 Search queries and corresponding query stream model patterns 176
6.2 Selected search results for the rhythm of Beethoven’s 5th Symphony

motif . 178
6.3 Search results for the absolute pitch sequence of Beethoven’s 5th Sym-

phony motif . 180
6.4 Search results for the rhythm of Beethoven’s 5th Symphony motif in

the key C minor . 182
6.5 Search results for the rhythm of Beethoven’s 5th Symphony motif in

the key E[major . 183

8.1 Fitness functions for statistical feature values 220
8.2 Fitness functions for statistical distributions 221
8.3 Mutation operators . 224
8.4 Parameters for the evolutionary composition process 226
8.5 Parameters for the evolutionary composition process used for the run

depicted in Figure 8.4 . 228
8.6 Fitness functions for the evolutionary crossover process 235
8.7 Ratios of origin composition elements in the crossover composition . . 236
8.8 Target values and actual values of statistical features of the generated

composition . 247

A.1 CD Contents . 273

xiv

Acronyms

AI Artificial Intelligence 28, 30

ANN Artificial Neural Network 44, 46–48, 53, 54, 57, 58

ATN Augmented Transition Network 40

BNF Backus–Naur form 37

BPM Beats per Minute 94, 159

CSV Comma Separated Values 199, 261, 262

DFA Deterministic Finite Automaton 38

EA Evolutionary Algorithm 48–51, 230–232, 235, 242, 253, 262, 264

EBNF Extended Backus–Naur form 37, 154

EC Evolutionary Computation 48

EMF Eclipse Modeling Framework 153

EMI Experiments in Musical Intelligence 42–44

GA Genetic Algorithm 51–55, 239, 242

GE Grammatical Evolution 53, 54

GP Genetic Programming 51, 55, 57, 230, 231, 237, 239, 242

GUI Graphical User Interface 25, 53, 271

HMM Hidden Markov Model 33, 36

HTML Hypertext Markup Language 290

IDE Integrated Development Environment 2

xv

LSTM Long Short-Term Memory 46, 48

MC2L Musical Context Composition Language 2, 88, 157, 290

MIDI Musical Instrument Digital Interface 6, 7, 9, 10, 19, 23, 58, 98, 157, 164, 167,
169, 182, 199, 290

MIR Music Information Retrieval 18

MP3 MPEG Audio Layer III 290

MPS Music Processing Suite 1, 2, 4, 33, 60, 63, 67, 68, 70, 79, 80, 91, 94, 98, 99,
104–106, 108, 110, 111, 113, 133, 139, 144, 153, 157, 158, 167, 169, 182, 183,
187, 196–199, 201, 213, 217, 218, 223, 226, 235, 248, 273, 274, 290

NFA Non-deterministic Finite Automaton 38

OSC Open Sound Control 167

PDF Portable Document Format 19, 164, 182, 199, 226, 290

PPQ Pulses per Quarter Note 7

RLE Run-Length Encoding 175

RTN Recursive Transition Network 40

SMF Standard MIDI File 7

SOM Self-organizing Map 46

SPN Scientific Pitch Notation 66, 98

TCP Transmission Control Protocol 167

TN Transition Network 40, 42

UDP User Datagram Protocol 167

XML Extensible Markup Language 19, 20

xvi

Chapter 1

Introduction

I can’t understand why people are frightened of
new ideas. I’m frightened of the old ones.

— John Cage (Kostelanetz 2003)

The advent of computers has drastically changed our possibilities of creating, pro-
cessing and distributing information. Since the early beginnings of the computing
era, computers have been considered for musical applications, which was first pro-
posed by Lady Ada Lovelace in 1843. The first approaches for applying formalizable
rules to produce music even go back to Guido of Arezzo around 1000 AD. Today,
a broad range of computer-aided applications is available for creating, recording,
editing, enhancing, searching, analyzing and evaluating music. Historic and current
developments in music information processing are presented in Chapter 2 of this
dissertation.
This dissertation focuses on symbolic music processing, which is concerned with the
logical structure of elements in musical compositions and the relationships between
these elements, as opposed to concrete sounds represented by means of sampled
sound waves (Bellini et al. 2006, p. 73). This work contributes to the fields of mu-
sic representation and algorithms used for symbolic music processing. All proposed
models and algorithms are implemented in a versatile software system named Music
Processing Suite (MPS)1, the development of which is documented in this work.
MPS is designed to be a multifunctional tool for symbolic music processing appli-
cations such as music notation for scores and lead sheets, format transformations,
music analysis, music visualization and algorithmic composition, as will be demon-
strated in the course of this dissertation. An overview of the system’s components
is shown in Figure 1.1. Figure 1.2 provides a visual impression of the application.

1
http://www.musicprocessing.net/

1

http://www.musicprocessing.net/

CHAPTER 1. INTRODUCTION
Music Processing Suite (MPS)

Composition
Modelling

Composition
Language

Music
Analysis

Algorithmic
Composition

Graphical User
Interface / IDE

Transformations

Figure 1.1: Overview of Music Processing Suite components. Icons from fontawesome.com
used without modification and in accordance with the Creative Commons Attribution 4.0
International License.

New music representation models provide a basis for the proposed system. Instead
of simply representing music in terms of note and rest sequences, MPS is based
on an advanced model introducing multiple musical layers for individual musical
aspects. For instance, information relating to instruments, meter, tempo, rhythms,
pitches, keys, harmonies and lyrics are represented in separate context layers for
each voice. A crucial advantage of the model is that custom context layers can
be added. Two different model presentations are proposed: a time-based layer
representation, explained in Chapter 3, and an advanced concise tree representation,
which is introduced in Chapter 4.
A domain-specific composition language named Musical Context Composition Lan-
guage (MC2L) was developed in conjunction with the composition model in order
to make the capabilities of the model accessible to musicians, composers and re-
searchers. The language has a simple intuitive syntax and also allows the specifica-
tion of musical modifications and control structures. An integral part of the MPS
application is an Integrated Development Environment (IDE) for the composition
language featuring syntax highlighting, automatic code completion, code validation
and a graphical outline view (see Figure 4.37). The language is introduced in con-
junction with the tree-based composition model in Chapter 4.
MPS also features an infrastructure for music format transformations. This includes
conversion between the proposed model and language formats, as well as function-
ality to import compositions in standard formats, namely MIDI and MusicXML.
Possible transformations are specified and illustrated in Chapter 5.

2

https://fontawesome.com/icons?d=gallery&m=free
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Figure 1.2: Screenshot of the MPS Application. The following views are visible: a toolbar (top, see Chapter 5.8 and Figure 5.16), project explorer
(left), composition language editor (center), outline view (right) and console (bottom).

3

CHAPTER 1. INTRODUCTION

Chapter 6 introduces approaches to search musical fragments in arbitrary sized
corpora. The advantage of the system is that due to the fine-grained composition
model, arbitrary combinations of musical aspects can be specified as search criteria.
The composition model design also facilitates fine-grained music analysis. MPS
is capable of generating detailed PDF reports visualizing statistical music analysis
data in various scopes from single pieces up to large corpora. The functionality
of this subsystem is demonstrated in Chapter 7. This chapter has a preparatory
character in view of the final chapter, in which statistical music analysis methods
play a decisive role.
Finally, Chapter 8 is concerned with automated composition. Based on the pro-
posed models and analysis functionality, an evolutionary algorithm is presented,
which is capable of recombining musical compositions, creating style imitations and
generating original musical material with varying musical properties.
A compact description of the system and its functionality can be found in the related
2016 conference paper published in the proceedings of the International Computer
Music Conference (Hofmann 2016).

4

Part I

Theory and Models

5

Chapter 2

State of the Art

Know the rules well, so you
can break them effectively.

— Dalai Lama XIV

This chapter summarizes the state of the art regarding essential research topics,
models and systems. Relevant research fields include computer science, mathemat-
ics, linguistics, musicology, creativity research and biology. The chapter is structured
as follows: first, music representation formats are introduced and compared. Sec-
ond, several aspects of creativity and their potential of being simulated by means of
computer programs are discussed. Finally, essential models and algorithms suitable
for analyzing, processing and generating music are introduced and discussed.

2.1 Music Representation

This section provides an overview of existing data models to represent symbolic
musical information.

2.1.1 Musical Instrument Digital Interface

Musical Instrument Digital Interface (MIDI) is a standard for exchanging symbolic
music-related control messages, which was originally designed for exchanging data
between keyboards, synthesizers and other devices for musical applications in the
early 1980s (Collins 2010, p. 47). The MIDI specification defines the encoding of
certain event types and corresponding parameters, the most important of which
are summarized in Table 2.1 (Weihs et al. 2016). Although originally designed to
interconnect musical equipment for real time applications, event sequences can also

6

CHAPTER 2. STATE OF THE ART

Table 2.1: Encoding of common MIDI events. Status bytes are shown in hexadecimal
representation, where n is one of 16 possible MIDI channels.

Status
Byte

Data
Byte 1

Data
Byte 2 Description

8n note
(0-127)

release velocity
(0-127)

Note off event: stops the given note in
MIDI channel n

9n note
(0-127)

attack velocity
(0-127)

Note on event: starts sounding the given
note in channel n

An note
(0-127)

pressure
(0-127)

Polyphonic pressure: applies aftertouch
pressure with the given value to the
given note in MIDI channel n

Bn controller
(0-127)

value
(0-127)

Controller: sets a given value to a given
numbered controller on MIDI channel n

Cn program
(0-127)

Program Change: selects the given pro-
gram on MIDI channel n, e.g. an instru-
ment

Dn pressure
(0-127)

Channel Pressure: applies aftertouch
pressure to all sounding notes in chan-
nel n

En lsb
(0-127)

msb
(0-127)

Pitch Bend: applies pitch bending to all
sounding notes in channel n. The seven
bits of both data bytes are interpreted as
one large 14 bit number, providing accu-
rate pitch bend resolution.

be represented in files. A common encoding is defined for Standard MIDI Files
(SMFs). The events are associated with time stamps, which are given in the unit
MIDI ticks. Typically, the number of MIDI ticks per quarter note, or Pulses per
Quarter Note (PPQ), are specified in a corresponding MIDI file header.
MIDI files contain one or more tracks, each of which contain MIDI events (see section
2.1.1). A common visualization of note on and corresponding note off events is a
piano roll representation, which is illustrated using J. S. Bach’s Sinfonia 1, BWV
787 as an example. The score and corresponding piano roll representations of the
two MIDI tracks are shown in Figure 2.1. MIDI uses the following strategy to encode
pitches: each key on the piano, i.e. each semitone step, is assigned a unique number,
middle C being encoded as the number 60, C] above as 61, D as 62 and so on.
The duration of notes is not explicitly given in the MIDI format. Instead, individual
note durations have to be derived from the time stamps of note on and note off
events with corresponding pitches. The note event matching is not trivial, because
events with matching pitches do not necessarily occur consecutively. For example,
the note off event for the half note beginning in measure 2 (see Figure 2.1a), which

7

CHAPTER 2. STATE OF THE ART

(a) Score of J. S. Bach, Sinfonia 1, BWV 787, mm. 1–2

(b) Piano roll representation of the upper part

(c) Piano roll representation of the lower part

Figure 2.1: Score and piano roll representations of MIDI events in J. S. Bach, Sinfonia 1,
BWV 787, mm. 1–2, visualized in Logic Pro X. Corresponding audio and MIDI files are
available on the accompanying CD under Audio/Examples/Bach/BWV787_Sinfonia1 (see
Appendix A).

8

CHAPTER 2. STATE OF THE ART

Table 2.2: MIDI meta events

Data Sequence Description

FF 01 length text Arbitrary ASCII text for comments or descriptions
FF 02 length text Copyright text
FF 03 length text Track name
FF 04 length text Instrument name
FF 05 length text Lyrics
FF 06 length text Marker text, e.g. ‘Verse’ or ‘Chorus’
FF 2F 00 End of track
FF 51 03 tt tt tt Tempo specification. The three bytes tt tt tt are

interpreted as 24-bit value containing the tempo in mi-
croseconds per quarter note.

FF 58 04 nn dd cc bb Time signature with numerator nn and denominator
2dd. The number cc specifies the number of MIDI ticks
between metronome clicks. bb specifies the number of
notated 32nd notes per quarter note (normally 8).

FF 59 02 sf mi Indicates a key signature where the byte sf encodes
the number of flats or sharps: 0 equals C major (or A
minor), -1 represents 1 flat, 1 is equivalent to 1 sharp,
etc. The second byte mi indicates a major (0) or minor
(1) key.

is tied to the following quarter note, occurs after note events for the simultaneously
played series of sixteenth notes.
MIDI also specifies so called meta events, which encode additional information mu-
sically relevant for a piece, such as tempo specifications, time signatures, key sig-
natures or lyrics. Correspondent MIDI messages have the format FF type length

data. A selection of meta events in listed in Table 2.2.
MIDI has proven to be a versatile symbolic music format and is still used today
in many recording, production and live performance scenarios. Disadvantages com-
monly associated with MIDI are: the encoding of pitches, which makes enharmonic
decisions impossible (e.g. F] and G[are encoded with the same MIDI note number)
and difficulties encoding complex rhythms, which are not in all cases accurately rep-
resentable in MIDI ticks, leading to quantization issues. The latter issue sometimes
becomes apparent when importing MIDI files into score editing software. Further-
more, MIDI data is not human-readable due to its organization in raw byte sequences
and is therefore only interpretable by computers.

9

CHAPTER 2. STATE OF THE ART

2.1.2 MuseData

MuseData is a music description format used to encode the logical content of mu-
sical scores. The MuseData specification includes guidelines on how to store files
representing a corpus of compositions in a hierarchical folder structure. Files are
categorized into Stage-1 files, which contain pure pitch and duration information,
and Stage-2 files which are used for a variety of applications such as generating
MIDI files, analysis and printing scores or parts (Hewlett 1997, p. 402).⌥ ⌅

1 measure 1
2 E4 2
3 D4 2
4 C4 2
5 rest 2
6 measure 2
7 E4 2
8 D4 2
9 C4 2

10 rest 2
11 measure 3
12 G4 2
13 F4 1
14 F4 1
15 E4 4
16 measure 4
17 G4 2
18 F4 1
19 F4 1
20 E4 4⌃ ⇧

Listing 2.1: MuseData records representing the first four measures of the children’s folk
song Three Blind Mice (Hewlett 1997, p. 412)

MuseData files are organized as “a set of time-ordered, variable length ASCII records”
(Hewlett 1997, p. 406) Header information include work and movement numbers
and titles, key, time division metadata, clefs, transposing part metadata, number
of staves and the number of instruments represented. Pitch information is encoded
with the three parameters pitch name (A. . . G or r for rests), chromatic inflection
(sharps, flats, natural) and octave number. Durations are specified based on divi-
sions. The number of divisions per quarter note is given as header information. A
simple example is shown in Listing 2.1.
A more complex example is shown in Listing 2.2, in which four measures of a Mozart
sonata are encoded. The corresponding score is shown in Figure 2.2.⌥ ⌅

1

2

3

4 06/23/94 W. Hewlett
5 WK #:331 MV#:3
6 Breitkopf & H\3artel
7 Piano Sonata
8 1 0
9 Group memberships: sound , score

10

CHAPTER 2. STATE OF THE ART

10 sound: part 1 of 1
11 score: part 1 of 1
12 &
13 Initial conversion from stage 1 to stage 2
14 &
15 $ K:3 Q:4 T:2/4 C1:4 C2:22
16 C#6 8 h u1 S
17 back 8 1
18 A5 4 q d1
19 E5 4 q d1
20 C#5 4 q d1
21 back 4
22 gA2 4 t u2 [[[[
23 P C33:o
24 gC#3 4 t u2 ===
25 gE3 4 t u2]]]
26 A3 2 e d2 []
27 A3 2 e d2 =
28 A3 2 e d2 =
29 A3 2 e d2]
30 measure 2
31 D6 1 s d1 [[(
32 C#6 1 s d1 ==)
33 B5 1 s d1 == .
34 C#6 1 s d1]] .
35 D6 1 s d1 [[(
36 C#6 1 s d1 ==)
37 B5 1 s d1 == .
38 C#6 1 s d1]] .
39 back 8
40 gA2 4 t u2 [[[[
41 P C33:o
42 gC#3 4 t u2 ===
43 gE3 4 t u2]]]
44 A3 2 e d2 []
45 A3 2 e d2 =
46 A3 2 e d2 =
47 A3 2 e d2]
48 measure 3
49 D6 8 h d1
50 A5 8 h d1
51 F#5 8 h d1
52 back 8
53 gD2 4 t u2 [[[[
54 P C33:o
55 gF#2 4 t u2 ===
56 gA2 4 t u2]]]
57 D3 2 e d2 []
58 D3 2 e d2 =
59 D3 2 e d2 =
60 D3 2 e d2]
61 measure 4
62 gD6 4 t u1 (
63 C#6 2 e d1 [)
64 A5 2 e d1
65 E5 2 e d1
66 gD6 4 t u1 (
67 C#6 2 e d1 =)

11

CHAPTER 2. STATE OF THE ART

68 A5 2 e d1
69 E5 2 e d1
70 gD6 4 t u1 (
71 C#6 2 e d1 =)
72 A5 2 e d1
73 E5 2 e d1
74 gD6 4 t u1 (
75 C#6 2 e d1])
76 A5 2 e d1
77 E5 2 e d1
78 back 8
79 gA2 4 t u2 [[[[
80 P C33:o
81 gC#3 4 t u2 ===
82 gE3 4 t u2]]]
83 A3 2 e d2 []
84 A3 2 e d2 =
85 A3 2 e d2 =
86 A3 2 e d2]
87 measure 5
88 B5 6 q. u1 (
89 E6 2 e u1)
90 back 8
91 G#5 8 h d1
92 E5 8 h d1
93 back 8
94 gE2 4 t u2 [[[[
95 P C33:o
96 gG#2 4 t u2 ===
97 gB2 4 t u2]]]
98 E3 2 e d2 []
99 E3 2 e d2 =

100 E3 2 e d2 =
101 E3 2 e d2]
102 measure 6
103 /END⌃ ⇧

Listing 2.2: MuseData code representing W. A. Mozart, Piano Sonata No. 11 in A major,
K. 331/300i, Mv. 3 (“Alla Turca”), mm. 98–102 (Hewlett 1997, p. 412)

 4

!
"# !!!
!!

"#
!!

"# !!!
!!!! !!

!

!!!
!!
"

!

!

!

"# !

!!

!
98

!! !!
! " ##

#

##
#

!!!
!!

!

$

!!
"

$

! !

!!$

!! !! !

""""

! !
!

!

$"!!!
!!
"! !

!

!!

!

!

"
!!

! !

$$$
"

!

!! !!

!!

!

!!
"

!! !!

!!

!! !

!!

!!

!!!!

$$$
"

!!
"

!

!!!! !

!

!

!

!!

!!

!
##
#"

103

!!!!!!"
##

#
!!!
! "

!!

$$$!

!

"#

!
!! !!

$"!!!
!!
"

! !!!!

""""

!!

$"!!!
f!!
"

!

!! !!

!!

!4

!!
"

!! !!

""""

!!
!!

!!!
!

!!!!

!

!

!3!

! !

"$!

#

##
#"

108

!!!#
##
!

"$!

!!!!

!

"

!!

!!!
"# "#

!

!!

!!!
"#

!

!

!!

!

!!!
p !

$

!

4!!

!!

!!!
"#
!

!!

!!!

5!

%!

!!

!!

!

#

!!!

!2

!

$
"# !!

! ! ! ! !!

112

" ##
#

$
##

#

""""
$"!!!
f
!1!
"

!1!!3! !2!

!

!

!!

!

!!

!

!

!

$"

!

!!

!

!

!

!

!

!!

!

!!

!

"# !!

! !!

!

!

!!
"# !!

!! ! !! ! !

!2!

!

!
3"#

!

!

"#

!

!
"# !!!

!!

!!!

!!
"

$$
"

!!
"

!

!

"# $

!

!! !! !!

117

"! ##
#

##
#

!!

!!

!!
"# ! "# !!!

!!! !

!

!

!!

!!

!!

!

"

!!$"!!!
!!
"! !

!
!! !!

!

""""

!! !! !
!

$$$
"

!!
"

!
! !!

!

!! !!

!!

!

!!
!

!!

!

!!

!!
!

!!
"

!!

!

!!

!

!!
!!
!

!2!

!

più f
!1!
"

&

&

122

" ##
#

%
##

#

!!
!

!!

!!!!
"

!!!!
"

!!!!
"

ff
!!!!
"

! !!
!! !

!!
%

!!
"

$
$

!!!!
%

!!
"

$

! !
!

!!

!!
!

!!
##

$$$

!!

!!
!

!!
##

!! !!
! !!!

!

!!
!

!!
##

!!
%

!!
"

$
$

! !

Copyright © 2013 Drew Weymouth

Figure 2.2: W. A. Mozart, Piano Sonata No. 11 in A major, K. 331/300i, Mv. 3 (“Alla
Turca”), mm. 98–102. Edited by Drew Weymouth and made available at imslp.org un-
der the Creative Commons BY-NC 3.0 License. Corresponding audio and MIDI files are
available on the accompanying CD under Audio/Examples/Mozart/RondoAllaTurca (see
Appendix A).

In Listing 2.2, chords are specified in two different ways. The first variant is to use
spaces as prefix for pitch specifications, which causes notes to be appended to the

12

https://imslp.org/wiki/Piano_Sonata_No.11_in_A_major%2C_K.331%2F300i_(Mozart%2C_Wolfgang_Amadeus)
https://creativecommons.org/licenses/by-nc/3.0/

CHAPTER 2. STATE OF THE ART

previous one (e.g. lines 19 and 20). Another strategy is to use backup commands
(encoded as back) to go back in time and add simultaneously played notes with a
different duration (e.g. in line 17).
The table-like structure of MuseData records is intuitive regarding the chronological
sequence and the granularity of the represented instructions. However, the encoding
of the conveyed instructions is not always clear, since in part cryptic codes are used.
A selection of MuseData codes is shown in Table 2.3 (Hewlett 1997, pp. 410ff.).

Table 2.3: Selection of MuseData codes

Code Description Code Description

L graphic note type long g grace note

b graphic note type breve c cue note

w graphic note type whole . dot for rhythmic prolongation

h graphic note type half : double dot for rhythmic pro-
longation

q graphic note type quarter * start tuplet

e graphic note type eighth ! stop tuplet

s graphic note type six-
teenth

A vertical accent up

t graphic note type 32nd
V vertical accent down

x graphic note type 64th
> horizontal accent

y graphic note type 128th
. staccato

z graphic note type 256th
_ tenuto or marcato

sharp s sharp on ornament

n natural h natural on ornament

f flat b flat on ornament

x double sharp ss double sharp on ornament

X sharp-sharp + cautionary/written out acci-
dental

& flat-flat bb double flat on ornament

d stem down S arpeggiate (chords)

u stem up F upright fermata

[start beam E inverted fermata

= continue beam p piano (p, pp, etc.)

Continued on next page

13

CHAPTER 2. STATE OF THE ART

Table 2.3 – Continued from previous page

Code Description Code Description

] end beam m mezzo (mp, mf)

- tie f forte (f, ff, fp, etc.)

(open slur 1 Z sfz

) close slur 1 Zp sfp

[open slur 2 R rfz

] close slur 2 t tr (trill)

Analyzing the encodings in Table 2.3, another issue becomes apparent: depending on
the context, different encodings are used for equivalent circumstances. For instance,
accidentals on regular notes are encoded differently than on ornaments: sharps are
denoted with the code # in conjunction with regular notes and with s for ornaments.

2.1.3 Humdrum

Humdrum is a music information processing software primarily targeted at music
researchers (Huron 2002). The system consists of two components: the Humdrum
Syntax and the Humdrum Toolkit. The syntax is designed to accommodate any
type of sequential symbolic data, and can also be used for non-musical purposes.
The Humdrum Toolkit provides a broad variety of tools to process data, namely:

• Visual display (rendering scores or score parts)

• Aural display (playing score or score parts)

• Searching (looking for specific information)

• Counting (counting occurrences of specific structures)

• Editing (changing scores according to certain rules or instructions)

• Editorializing (adding editorial comments)

• Transformations (e.g. applying transpositions, replacing chords according to
specified rules)

• Arithmetic analysis (e.g. analyzing intervals)

• Extraction and selection of data (e.g. extracting score sections, excluding
specified parts)

14

CHAPTER 2. STATE OF THE ART

• Linking and joining data (e.g. assembling scores, correlate musical data with
additional external data)

• Generating inventories (creating lists of certain symbols or structures)

• Classifying (e.g. identifying certain chords or intervals)

• Labelling (e.g. marking sections or words)

• Comparison (e.g. comparing manuscripts and edited scores)

• Trouble-shooting (e.g. checking if notational criteria are met)

Similar to MuseData, Humdrum uses a table-oriented description syntax, which is
evocative of spreadsheets. The data representation is very flexible, since the columns,
each representing a block of arbitrary data, can be arranged as required by the
specific musical task at hand. For instance, these could contain pitches, durations,
harmonies or fingering instructions. Generally, entries in the same row represent
concurrent events and rows are ordered chronologically, i.e. rows are interpreted as
consecutive events. Refer to Listing 2.3, in which the subject of J. S. Bach’s The
Art of Fugue, BWV 1080 is encoded in the so called kern1 representation, which
accommodates musical core information for western musical scores2. An equivalent
score is presented in Figure 2.3.

Figure 2.3: J. S. Bach, The Art of Fugue, BWV 1080, subject. Corresponding files
are available on the accompanying CD under Examples/Compositions/Bach/BWV1080_
TheArtOfFugue (see Appendix A).

A more complex example containing multiple columns (so called spines) is shown
in Listing 2.4. The code was generated by a program developed specifically to
interpret a custom Humdrum representation of harmonic progressions in jazz music
(Broze and Shanahan 2012). The input is repeated in the first column or spine
with the identifier **jazz. The **kern representation of the root note is visible in
the second spine. The **exten column contains extended harmonic information
only, without the root note. The following column represents the root note of
the corresponding harmony as defined by solfège solmization. **mint stands for
melodic interval representation and encodes the musical intervals between successive

1Kern is German for core
2An excellent graphical explanation of the file contents is available at http://www.humdrum.

org/guide/ch02/

15

http://www.humdrum.org/guide/ch02/
http://www.humdrum.org/guide/ch02/

CHAPTER 2. STATE OF THE ART
⌥ ⌅

1 ** kern
2 *clefG2
3 *k[b-]
4 *d:
5 *M2/2
6 *met(c)
7 =1-
8 2d/
9 2a/

10 =2
11 2f/
12 2d/
13 =3
14 2c#/
15 4d/
16 4e/
17 =4
18 [2f/
19 8f]/L
20 8g/
21 8f/
22 8e/J
23 =5
24 4d/
25 *-⌃ ⇧

Listing 2.3: Humdrum representation of J. S. Bach, The Art of Fugue, BWV 1080, subject
(Huron 1995)

!""""""#
$

B"7 !13
%%%%
%

&$ $
$

%%' """""" !
%

E"m7 A"7
%%%%
%

%%%%
%
%

$
E"m7
%%%%

%
%

G"7
%%%%
%
"!

D"
%%%%

%

$%
Eo7Fm7

%%%%
%
$

(
((((
A"7
$

D"6
((((
((

((((
E"m7 Fø

((((
(
$ $

(
((((
B"7

"
(
((((
G"7E"m7

%%%%
%

E"m7/D"
%%%%
%

!
5

' """"""

""""""#

F7
!9

%%%%
%

%
$$

B"m7
%%%%
%

Cø

%%%%

%
$
$

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 2.4: Score illustrating the harmonic progression specified in Listing 2.4. Note
that the Humdrum code in the listing only specifies abstract harmonies, not the specific
chord voicings. This score was primarily generated using chord generators, which were
developed as a component of Music Processing Suite (see Chapter 4.7.1). Correspond-
ing files are available on the accompanying CD under Examples/Model/ChordGenerator/
JazzHarmonicProgression (see Appendix A).

harmony root notes. Interval numbers are accompanied by the following signifiers:
P for perfect, M for major, m for minor and d for diminished intervals, among others3.
The **quals spine contains the chord quality only, and the final column (**dur)
contains harmony durations. A corresponding score is shown in Figure 2.4.

3
http://www.humdrum.org/rep/mint/

16

http://www.humdrum.org/rep/mint/

CHAPTER 2. STATE OF THE ART
⌥ ⌅

1 ** jazz **kern **exten **solfa **mint **quals **dur
2 *thru *thru *thru *thru *thru *thru *thru
3 *M4/4 *M4/4 *M4/4 *M4/4 *M4/4 *M4 *M4/4
4 *D-: *D-: *D-: *D-: *D-: *D-: *D-:
5 2E-:min7 E- min7 re [E-] min7 2.0000
6 2B-7b13 B- 7b13 la P5 dom 2.0000
7 = = = = = = =
8 2E-:min7 E- min7 re P4 min7 2.0000
9 2A-7 A- 7 so P4 dom 2.0000

10 = = = = = = =
11 2D-:maj7 D- maj7 do P4 maj 2.0000
12 2G-7 G- 7 fa P4 dom 2.0000
13 = = = = = = =
14 2F:min7 F min7 mi M7 min7 2.0000
15 2Eo7 E o7 ri M7 dim 2.0000
16 = = = = = = =
17 2E-:min7 E- min7 re d1 min7 2.0000
18 2E-:min7/D- E- min7 re P1 min7 2.0000
19 = = = = = = =
20 2Ch7 C h7 ti M6 half 2.0000
21 2F7b9 F 7b9 mi P4 dom 2.0000
22 = = = = = = =
23 2B-:min7 B- min7 la P4 min7 2.0000
24 4E-:min7 E- min7 re P4 min7 1.0000
25 4A-7 A- 7 so P4 dom 1.0000
26 = = = = = = =
27 4D-6 D- 6 do P4 maj 1.0000
28 4G-7 G- 7 fa P4 dom 1.0000
29 4Fh F h mi M7 half 1.0000
30 4B-7 B- 7 la P4 dom 1.0000
31 == == == == == == ==
32 *- *- *- *- *- *- *-⌃ ⇧

Listing 2.4: Humdrum representation of a harmonic progression in a jazz piece (Broze and
Shanahan 2012)

2.1.4 abc

abc is a text-based system for music notation. By design, it is readable and compre-
hensible by both humans and computers (Walshaw 2011). The abc representation
of the Bach subject in Figure 2.3 is presented in Listing 2.5.
⌥ ⌅

1 T:Art of Fugue Subject
2 C:J. S. Bach
3 M:4/4
4 L:1/2
5 K:Dm
6 D A F D | ^C D/2 E/2 | F- F/4G/4F/4E/4 | D/2⌃ ⇧

Listing 2.5: J. S. Bach, The Art of Fugue, BWV 1080, subject, notated in the abc language

Listing 2.5 starts with the specification of metadata, namely the title and the com-
poser of the piece followed by musical context information such as the time signature
(M:4/4), a reference note duration (L:1/2) and the key of the composition (K:Dm).
The score contents are given as a sequence of symbols. Pitches are specified using
note names, the suffixes , and ' may be used for octave translations. The prefixes ˆ
and _ are used for sharp and flat accidentals, respectively. Durations are specified as

17

CHAPTER 2. STATE OF THE ART

a multiple of the reference duration given in the header. In the example, the refer-
ence duration is set to half notes, therefore quarter notes are written with the suffix
/2, e.g. the third note D/2. The abc system also supports advanced musical nota-
tions such as beams, repeats, ties, slurs, grace notes, tuplets, chords, chord symbols
and lyrics (Walshaw 2011). A number of software implementations for interpreting
and rendering abc are available4.

2.1.5 GUIDO

GUIDO is a formal language for the representation of musical scores in human-
readable text format (Hoos, Hamel, et al. 1998). The system consists of three layers
with support for increasing notational complexity:

1. Basic GUIDO for basic music representation

2. Advanced GUIDO for exact score formatting options and more complex mu-
sical structures

3. Extended GUIDO supporting non-conventional music notation

The Bach subject shown in Figure 2.3 can be represented in GUIDO as illustrated
in Listing 2.6:
⌥ ⌅

1 [\meter <"4/4" > \key <-1>
2 d/2 a f d c# d/4 e \tieBegin f/2 \beam(f/8 \tieEnd g f e) d/4]⌃ ⇧

Listing 2.6: J. S. Bach, The Art of Fugue, BWV 1080, subject, in GUIDO notation

Advanced applications, such as more complex notation and Music Information Re-
trieval (MIR) based on GUIDO are documented in (Hoos, Hamel, et al. 1998; Hoos,
Renz, et al. 2001).

2.1.6 LilyPond

LilyPond is a music engraving system based on text files and a compiler which is
capable of rendering high quality Portable Document Format (PDF) files and MIDI
files. The system provides automatic layout and formatting capabilities, i.e. even if
no layout specifications are given, the system is designed to output well-organized
and easily readable scores. Raw music information (e.g. pitches and durations)
can be enhanced with instructions regarding the layout of the score (Nienhuys and
Nieuwenhuizen 2003).

4
http://abcnotation.com/software

18

http://abcnotation.com/software

CHAPTER 2. STATE OF THE ART

The subject of Bach’s The Art of Fugue, BWV 1080 (see Figure 2.3) is represented
in LilyPond as shown in Listing 2.7.
⌥ ⌅

1 \version "2.12.0"
2 #(set -default -paper -size "a4")
3

4 \header {
5 title = "Art of Fugue Subject"
6 composer = "J. S. Bach"
7 }
8

9 \score {
10 \new Staff {
11 \key d \minor
12

13 \relative c’ {
14 d2 a’ f d cis d4 e f2~ f8 g f e d4
15 }
16 }
17

18 \layout {}
19 }⌃ ⇧

Listing 2.7: J. S. Bach, The Art of Fugue, BWV 1080, subject, represented in LilyPond

LilyPond is capable of representing a great variety of musical elements such as mi-
crotonal pitches, basic and complex rhythms (e.g. nested tuplets), expressive marks,
repeats with multiple alternatives and chord symbols. Special notation constructs
for vocal music, multi-staff instruments, unfretted and fretted string instruments,
percussion and wind instruments are available. The system also supports advanced
facilities for contemporary music, ancient notation and world music5.

2.1.7 MusicXML

MusicXML is a music notation interchange format based on the generic Extensible
Markup Language (XML). MusicXML was explicitly designed to circumvent issues
of existing proprietary music interchange formats, and is based on the foundations
of MuseData and Humdrum (Good 2001, p. 2). XML is a generic data interchange
format which is both readable by humans and computers. It allows the hierarchi-
cal arrangement of arbitrarily named elements represented in the form of so called
tags, which can optionally be associated with attributes and can have textual con-
tent (Marchal 2002, p. 42ff.). For example, a whole note with middle C pitch is
represented in MusicXML as shown in Listing 2.8.
Each note is represented as an XML element named note, which contains three child
elements: pitch, in turn containing the child elements step and octave, duration
and type. Each element is represented by an opening tag and a corresponding closing
tag. Closing tags are denoted by the corresponding opening tag name prefixed with

5
http://lilypond.org/doc/v2.18/Documentation/notation/

19

http://lilypond.org/doc/v2.18/Documentation/notation/

CHAPTER 2. STATE OF THE ART
⌥ ⌅

1 <note>
2 <pitch >
3 <step>C</step>
4 <octave >4</octave >
5 </pitch >
6 <duration >4</duration >
7 <type>whole </type>
8 </note>⌃ ⇧

Listing 2.8: MusicXML representation of a measure containing a whole note with middle
C pitch

a slash (/). Elements can in turn contain nested elements or text content (for
example, the element <type> contains the text whole, designating a whole note
printed in the score). Note durations are specified in terms of so called divisions. In
the previous example, a whole note has the length of four divisions, implying that a
quarter note has a duration of one division. Refer to the next example for another
division scenario. The reason why there is a supposedly redundant element named
type with the value whole is that the actual duration of the note can be different
from the note printed in the score. For example, long sequences of triplets are often
not explicitly marked as such, but as notes with a “simpler” duration. Examples
for this can be found in Beethoven’s Piano Sonata No. 14 in C# minor (see Figure
3.4a, mm. 2ff.) and Bach’s Prelude No. 15 in G Major, BWV 860 (see Figure 7.20).
A more complex example containing the first measure of Yesterday by the Beatles
is demonstrated in Listing 2.9. The corresponding score representation is shown in
Figure 2.5.

Figure 2.5: The Beatles, Yesterday, m. 1, vocal part

⌥ ⌅
1 <?xml version="1.0" encoding="UTF -8"?>
2 <!DOCTYPE score -partwise PUBLIC " -//Recordare //DTD MusicXML 3.0 Partwise //EN"
3 "http :// www.musicxml.org/dtds/partwise.dtd">
4 <score -partwise >
5 <work>
6 <work -title >Yesterday </work -title>
7 </work>
8 <identification >
9 <creator type="composer">Paul McCartney </creator >

10 </identification >
11 <part -list>
12 <score -part id="P1">
13 <part -name>Voice</part -name>
14 <score -instrument id="P1-I1">
15 <instrument -name>Voice</instrument -name>
16 </score -instrument >

20

CHAPTER 2. STATE OF THE ART

17 <midi -device id="P1-I1" port="1"></midi -device >
18 <midi -instrument id="P1-I1">
19 <midi -channel >1</midi -channel >
20 <midi -program >53</midi -program >
21 <volume >78.7402 </volume >
22 <pan>0</pan>
23 </midi -instrument >
24 </score -part>
25 </part -list>
26 <part id="P1">
27 <measure number="1" width="425.98">
28 <attributes >
29 <divisions >4</divisions >
30 <key>
31 <fifths >-1</fifths >
32 </key>
33 <time>
34 <beats >4</beats >
35 <beat -type>4</beat -type>
36 </time>
37 <clef>
38 <sign>G</sign>
39 <line>2</line>
40 </clef>
41 </attributes >
42 <harmony print -frame="no">
43 <root>
44 <root -step>F</root -step>
45 </root>
46 <kind>major </kind>
47 </harmony >
48 <note default -x="85.20" default -y=" -30.00">
49 <pitch >
50 <step>G</step>
51 <octave >4</octave >
52 </pitch >
53 <duration >2</duration >
54 <voice >1</voice >
55 <type>eighth </type>
56 <stem>up</stem>
57 <beam number="1">begin </beam>
58 <lyric number="1">
59 <syllabic >begin </syllabic >
60 <text>Yes</text>
61 </lyric >
62 </note>
63 <note default -x="163.45" default -y=" -35.00">
64 <pitch >
65 <step>F</step>
66 <octave >4</octave >
67 </pitch >
68 <duration >1</duration >
69 <voice >1</voice >
70 <type>16th</type>
71 <stem>up</stem>
72 <beam number="1">continue </beam>
73 <beam number="2">begin </beam>
74 <lyric number="1">

21

CHAPTER 2. STATE OF THE ART

75 <syllabic >middle </syllabic >
76 <text>ter</text>
77 </lyric >
78 </note>
79 <note default -x="212.36" default -y=" -35.00">
80 <pitch >
81 <step>F</step>
82 <octave >4</octave >
83 </pitch >
84 <duration >1</duration >
85 <tie type="start"/>
86 <voice >1</voice >
87 <type>16th</type>
88 <stem>up</stem>
89 <beam number="1">end</beam>
90 <beam number="2">end</beam>
91 <notations >
92 <tied type="start"/>
93 </notations >
94 <lyric number="1">
95 <syllabic >end</syllabic >
96 <text>day</text>
97 <extend/>
98 </lyric >
99 </note>

100 <note default -x="260.91" default -y=" -35.00">
101 <pitch >
102 <step>F</step>
103 <octave >4</octave >
104 </pitch >
105 <duration >12</duration >
106 <tie type="stop"/>
107 <voice >1</voice >
108 <type>half</type>
109 <dot/>
110 <stem>up</stem>
111 <notations >
112 <tied type="stop"/>
113 </notations >
114 </note>
115 <barline location="right">
116 <bar -style>light -heavy</bar -style>
117 </barline >
118 </measure >
119 </part>
120 </score -partwise >⌃ ⇧

Listing 2.9: MusicXML representation the first measure of Yesterday by the Beatles. Refer
to Figure 2.6 for a visualization of the logical structure.

Listing 2.9 contains not only the notes, but also lots of metadata regarding the
printed representation of the score. The logical structure of the document is visu-
alized in Figure 2.6. Note that MusicXML representation does not only address
the encoding of musical entities such as notes, rests and chords, but also encodes
information relevant for the corresponding score notation. While MIDI only en-

22

CHAPTER 2. STATE OF THE ART

Score

XML Header

Score Metadata
Part List

Score Part with ID "P1"

Part with ID "P1"
Measure with number "1"

Attributes
• Divisions per Quarter: 4
• Key: F major
• Time Signature: 4/4
• Clef: Treble
Harmony: F major
Note
• Pitch: G4
• Duration: 2 divisions
• Type: 8th
• Syllable: "Yes"
Note
• Pitch: F4
• Duration: 1 divisions
• Type: 16th
• Syllable: "ter"
Note
• Pitch: F4
• Duration: 1 divisions
• Type: 16th

• Tie to next note
• Syllable: "day" (extend to next note)
Note
• Pitch: F4
• Duration: 12 divisions
• Type: half
Bar line

• Part Name
• Instrument Name
• MIDI Configuration for playback

Figure 2.6: Logical structure of the MusicXML score representation shown in Listing 2.9

23

CHAPTER 2. STATE OF THE ART

codes events (such as note on and note off), MusicXML is designed to encode score
elements and additional graphical notation details. For example, it is explicitly
specified that the note on the syllable “day”, which lasts for 9 sixteenth notes, is
notated as a sixteenth note tied to a half note. Another example is the explicit
specification of beams. In line 57, a beam (with the number 1) starts at the first
note. At the second note in line 72, this beam is continued and a second beam (with
the number 2) starts in line 73. Both beams end at the third note, in lines 89 and
90, respectively. Refer to Figure 2.5 for the visualization of these beams.

2.1.8 music21

Designed as a toolkit for computer-aided musicology, music21 6 provides a variety
features concerning music data processing. The system is based on the Python
programming language and uses object-oriented data structures for music represen-
tation (Ariza and Cuthbert 2010). It provides an import functionality for MIDI,
MuseData, Humdrum’s **kern format and MusicXML files (Cuthbert and Ariza
2010).
The toolkit offers lots of flexibility due to the fact that users are able to load, traverse
and manipulate musical object structures by writing custom Python code. music21
also provides an extensible syntax for easy music notation called TinyNotation7. For
example, the subject from Bach’s The Art of Fugue, which was already introduced
in Figure 2.3, can be notated and displayed with the Python code in Listing 2.10.
⌥ ⌅

1 from music21 import *
2 converter.parse("tinynotation: d2 a f d c# d4 e f2~ f8 g f e d4").show()⌃ ⇧

Listing 2.10: Python code to notate and display the subject of Bach’s The Art of Fugue,
BWV 1080 using music21

Other advantages of music21 include support for musical analysis (Cuthbert and
Ariza 2010), feature extraction (Cuthbert, Ariza, and Friedland 2011) and the en-
richment of scores with derived data (Ariza and Cuthbert 2011).

2.1.9 SARAH

SARAH is a structured composition language based on term rewriting (Fox 2006).
Conceptually, the language is comparable to transformational music grammars pro-
posed by Holtzman (Holtzman 1980). Using SARAH, hierarchical musical structures
can be defined in terms of a set of grammar rules, as illustrated in Listing 2.11.

6
http://web.mit.edu/music21/

7
http://web.mit.edu/music21/doc/usersGuide/usersGuide_16_tinyNotation.html

24

http://web.mit.edu/music21/
http://web.mit.edu/music21/doc/usersGuide/usersGuide_16_tinyNotation.html

CHAPTER 2. STATE OF THE ART
⌥ ⌅

1 POP -SONG => {INTRO , VERSE , CHORUS , VERSE , CHORUS , BRIDGE , CHORUS , OUTRO}
2 VERSE => {RIFF -A,RIFF -B,RIFF -A,RIFF -B}
3 RIFF => [VOCALS ,BASS ,GUITAR]⌃ ⇧

Listing 2.11: Set of grammar rules in the SARAH language describing different hierarchical
levels of a pop song (Fox 2006, p. 1). Rules in curly brackets indicate sequential parts,
whereas rules in square brackets represent simultaneously played parts.

Based on the concept of bracketed Lindenmayer systems (Prusinkiewicz and Lin-
denmayer 1990; Ochoa 1998), rules can be parameterized in order to specify musical
transformations. In Listing 2.12, brackets prepended to rule names contain musical
transformation instructions, namely pitch transpositions and a rhythmic augmenta-
tion.⌥ ⌅

1 TWINKLE => {NOTE ,NOTE ,(^5)NOTE ,(^5)NOTE , (^6)NOTE ,(^6)NOTE ,(~2) (^5) NOTE}⌃ ⇧
Listing 2.12: SARAH representation of Twinkle, Twinkle, Little Star, mm. 1–2, containing
musical transposition and augmentation transformations specified in brackets. The
terminal NOTE represents a middle C (Fox 2006, p. 1).

Musical transformations assume an important role in compositional processes, as
will be taken on in Chapter 4. See section 2.3.4 for more detailed discussions on
grammar-based music representations. A Graphical User Interface (GUI) for edit-
ing, compiling and viewing compositions in the SARAH language named Music
Genie was developed (Fox 2006). The environment also features automated music
generation capabilities, which are covered in Chapter 2.3.7.

2.2 Computers and Creativity: An Overview

The following sections are concerned with the question whether and how creativ-
ity can be imitated by means of computer models. Human creativity is both a
fascinating and complex research field which has occupied scientists of various dis-
ciplines such as neuroscience, psychology, computer science, fine arts, architecture
and musicology for centuries. Margaret A. Boden defines creativity as follows:

Creativity [. . .] is the generation of novel, surprising, and valuable ideas.
’Ideas’, here, is a catch-all term covering not only concepts and theories
but also (for example) music and literature, and artefacts such as archi-
tecture, sculpture, and paintings. (Boden 2010, p. 1)

Not only is creativity a crucial human ability so solve problems and generate new
artifacts and techniques, but is also “critical for our ability to function and change
as a society” (McCormack and d’Inverno 2012, p. viii).

25

CHAPTER 2. STATE OF THE ART

On a scientific level, creativity is hard to grasp, formalize and analyze. Consequently,
transferring aspects of creativity to the world of computation is an even more chal-
lenging task. However, computers have proven to be effective both as tools in the
artistic context and for the algorithmic generation of musical compositions, as will
be discussed in the course of this chapter. Depending on the applications, com-
puters play rather passive roles, i.e. merely perform instructions given by users, or
can effectively make contributions which might be considered ‘creative’, whereby
distinctions between the two paradigms are often blurred.

2.2.1 Computers as Tools in Creative Processes

According to Iannis Xenakis, undreamt-of possibilities open up for composers uti-
lizing computer technology:

With the aid of electronic computers, the composer becomes a sort of
pilot: he presses buttons, introduces coordinates, and supervises the
controls of a cosmic vessel sailing in the space of sound, across sonic con-
stellations and galaxies that he could formerly glimpse only in a distant
dream. (Xenakis 1992, p. 144)

In the described scenario, computers are used as a vehicle to explore new spaces of
possibilities. However, the composer is still in control of the creative processes and
decisions. Another perspective is given in the following quote, in which computers
are considered a means of overcoming technical difficulties:

It is our belief that we now need to embrace and support the new forms
of creativity made possible by technology across all forms of human en-
deavour. This creativity is important because it provides opportunities
that have not been previously available, and are necessary if we are to
address the complex challenges we face in our increasingly technology-
dependent world (McCormack and d’Inverno 2012, p. viii).

When fulfilling the function of a tool, computers play a rather passive role, which is
not considered very creative. In the following, strategies to increase the autonomy
of computer systems with regard to the generation of music are discussed.

2.2.2 Computer Models of Creativity

While some ’magic’ aspects of creativity can only hardly be modeled, other facets
of creativity can be simulated well using computers:

26

CHAPTER 2. STATE OF THE ART

There are two distinct types of creativity: the flash out of the blue
(inspiration? genius?), and the process of incremental revisions (hard
work). Not only are we years away from modelling the former, we do
not even begin to understand it. The latter is algorithmic in nature
and has been modelled in many systems both musical and non-musical.
(Jacob 1996)

Even though we are far away from a complete understanding of human creativity,
scientists aim to gain further insight into creative processes by iteratively develop-
ing models and algorithms to evaluate their possibilities. This methodology yields
advanced and complex models, as described in the following:

One of the great challenges for computing is to achieve a fuller under-
standing of process [sic] and representations which are beyond those that
are easily computable or even fully comprehensible by humans. Neces-
sarily, human design of software requires reducing difficult and complex
concepts to far simpler abstractions that can be practically implemented,
in some cases even ignoring those aspects of a phenomena [sic] that are
too complex to express directly in a program. One way to overcome this
limitation is to design programs that are capable of initiating their own
creativity — to increase their complexity and discover ways of interact-
ing independently of human design. Yet people don’t naturally think of
creative expression in terms of formal algorithms, leading to a perceived
gap between natural creative human expression and computation. (Mc-
Cormack and d’Inverno 2012, p. viii)

Using appropriate models and algorithms, it is in fact possible to construct computer
programs which even surprise their creators. In the words of Douglas Hofstadter: “It
may not constitute creativity, but when programs cease to be transparent to their
creators, then the approach to creativity has begun” (Hofstadter 1979, p. 673).
There are a number of reasons why formalizing creativity is complex, especially in
the domain of music composition (Nilsson 1971; Simon and Newell 1971; Ramalho
and Ganascia 1994):

• Non-expressible goals: in most cases, it is difficult to exactly define and formal-
ize goals and termination criteria for automated music composition algorithms

• Non-determinism: many musical solutions (compositions) are acceptable for
one specific problem

27

CHAPTER 2. STATE OF THE ART

• Objectivity of evaluation: often no universal criteria for the evaluation of
generated music can be defined because aesthetic judgements are dependent
on individual taste, personal experiences and cultural influences

Especially modelling the aspect of creativity which is not to follow rules poses a
great challenge, as it contradicts the deterministic mode of operation implemented
in computer systems. However, astonishing applications are possible if higher-level
models and algorithms are used. Research has shown that some aspects of musical
creativity can at least partially be simulated by means of computational models
(Boden 1994; Ramalho and Ganascia 1994; Jacob 1996; Cope 2005; McCormack
and d’Inverno 2012). Furthermore, computer models and algorithms in the field of
Artificial Intelligence (AI) have been developed which allow advanced functionality
with regard to abstraction, classification, prediction, recombination and efficient
heuristics for optimization and search problems. These are discussed in detail in
Chapter 2.3.

2.2.3 Constraints and Creativity

A valuable perspective is Boden’s notion of the relation between constraints and
creativity:

Constraints, far from being opposed to creativity, make creativity possi-
ble. To throw away all constraints would be to destroy the capacity for
creative thinking. (Boden 1994, p. 6)

As soon as such constraints exist, creative processes can emerge by adhering to the
constraints or explicitly ignoring constraints. In the domain of music, a specific
style can be defined by a set of constraints: “A style is a (culturally favoured) space
of structural possibilities” (Boden 2010, p. 2).
Boden identifies three creative strategies which are applicable in constrained scenar-
ios (Boden 2004):

• Exploration of the space of possibilities resulting from the constraints

• Combination of ideas within the space, possibly leading to innovative com-
binational creativity

• Transformation, which involves pushing the boundaries of the constraint
space itself by amending or breaking constraints

28

CHAPTER 2. STATE OF THE ART

In the course of musical compositions, certain constraints defining a musical space of
possibilities (such as keys, metric structures, tempo, harmonic progressions, rhythms
and melodies) are typically introduced. Within this musical space, composers are
able to explore and combine musical ideas. Transformations of the constraint space
are possible as follows: If musical structures are constantly present or repeated in
regular patterns, listeners raise musical expectations (Huron 2006). If these expec-
tations are not met by suddenly ignoring one or more of the constraints (e.g. by
presenting sudden time signature or key changes or new sections introducing sig-
nificantly new musical ideas), listeners usually consider such musical twists to be
creative. Some aspects of these creative strategies can be simulated by means of
computer algorithms in combination with suitable music representation models, as
will be shown in the course of this dissertation.

2.3 Algorithmic Composition

Algorithmic composition involves using formalizable methods in order to generate
music. In this chapter, the historic development of algorithmic composition is sum-
marized. Afterwards, common algorithmic composition approaches are presented,
explained and respective advantages and disadvantages are discussed.

Algorithmic composition is perhaps a little bit like religion or politics;
one must find one’s own path. (Jacob 1996, p. 164)

2.3.1 Historical Context

Algorithmic music composition approaches have been employed by human com-
posers since around 1000 AD. It was Guido of Arezzo, who not only played a central
role in the development of music notation, but also proposed a system for the “au-
tomatic generation of melodies out of text material” (Nierhaus 2009, p. 21).
Raimundus Lullus (1232-1315) was the first one to propose a system using compo-
nents which closely resemble the ones of a modern computer. In his Ars Magna,
he proposes a system with a structure defined by diagrams (comparable to hard-
ware), a set of definitions forming a knowledge base (comparable to data) and a set
of application instructions (comparable to software). Although the system was not
explicitly designed for musical purposes, it could have been utilized for algorithmic
composition if the generated statements were interpreted in a suitable way (Nierhaus
2009, p. 24).
Athanasius Kircher (1602-1680) was a universal scholar concerned with astronomy,
mathematics, medicine, music, mineralogy, physics and linguistics. By applying

29

CHAPTER 2. STATE OF THE ART

combinatorial methods in an effort to decipher Egyptian hieroglyphs, he laid the
foundations of cryptology (Nierhaus 2009, pp. 24f.). He also developed a system
named Musurgia Universalis for algorithmic composition utilizing wooden sticks
(syntagmas) assigned to three categories. Numbers and rhythmic proportions were
engraved into the sticks, resulting in “contrapuntal compositions in the style of the
contrapunctus simplex and floridus”, which can be applied to other musical styles
(namely church style, madrigal, motet, fugue and monody) in an advanced version
(Nierhaus 2009, p. 25). Kircher also proposed the concept of pitch classes and
abstracting pitches from concrete modes (Nierhaus 2009, pp. 25f.).
Efforts made by Gottfried Leibniz pursued the goal of constructing an all-encompassing
language for the representation of all human knowledge and to find solutions for new
scientific problems (Glashoff 2003). He planned on providing a complete encyclope-
dia of scientific terms, a numeric encoding of all terms in his lingua universalis and
a logical system (calculus ratiocinator) for connecting and processing terms (Nier-
haus 2009, pp. 26f.). The algebraic formal logic proposed by Leibniz constitutes an
elementary foundation of AI (Glashoff 2003). According to Leibniz, music relies on
mathematical principles as well:

Musica est exercitium arithmeticae occultum, nescientis se numerare an-
imi (Music is a hidden arithmetic exercise of the soul, which does not
know that it is counting). (Geiringer 1969; Nierhaus 2009, p. 28)

In 1679, Leibniz described a mechanical calculating machine using a binary number
encoding system. According to the concept, containers with holes for cubes or
marbles should be provided, configurable to be closed (representing 0) or opened
(corresponding to 1). Depending on the container configurations, marbles either
fall into tracks or are blocked by closed containers. Although never actually built,
the machine represents a major breakthrough towards binary-based computation
(Nierhaus 2009, p. 33).
The first mechanical calculating machine to be built on this basis was the difference
engine developed by Charles Babbage from 1822 to 1832 (Nierhaus 2009, p. 40).
Babbage subsequently designed an advanced machine named analytical engine to
solve more complex mathematical problems. In his concept, punch cards should
be used for programming the machine. Punch cards were at that time used in the
textile industry to control looms. Babbage transferred the concept of this binary
representation to use punch cards as data carriers for operations (instructions) and
numbers (data). Although the analytical engine was never completed before his
death, his concepts were later validated and used as a basis for later computer
architectures.

30

CHAPTER 2. STATE OF THE ART

Ada Countess of Lovelace, considered to be the first female programmer in the
history of computer science, was an assistant of Babbage and was the first to mention
the idea of generating music algorithmically in 1843: “the engine might compose
elaborate and scientific pieces of music of any degree of complexity” (Collins 2010,
p. 300). However, algorithmic composition programs were not actualized at the time
(Miranda 2001).
In 1941, Konrad Zuse accomplished the development of the first programmable elec-
tronic computer to process binary numbers named Z3, in which mechanical switches
were replaced with relays (Nierhaus 2009, p. 50). With his invention, Zuse paved
the way for the advent of modern digital computers.

2.3.2 Stochastic Processes

A simple approach to algorithmically generate a musical piece is to concatenate
randomly chosen musical symbols (such as notes and rests). Solely random com-
positions are usually perceived as chaotic and not musically appealing. However,
randomness can be utilized as an interesting element in musical decision making.

It is a common notion that randomness is an indispensable ingredient
of creative acts. This may be true, but it does not have any bearing
on the mechanizability – or rather, programmability! – of creativity.
(Hofstadter 1979, p. 673)

A prominent example for aleatory algorithmic composition is a type of musical game
which gained popularity in the eighteenth century known as Musikalisches Würfel-
spiel (Dice Music), in which pre-composed measures are combined according to
numbers produced by rolling dice. Games of the described nature were created by
well-known composers such as Carl Philipp Emanuel Bach, Johann Philipp Kirn-
berger, Franz Joseph Haydn, Wolfgang Amadeus Mozart and Maximilian Stadler
(Cope 1996). An unimaginably large number of unique works can be generated
with a small basis of musical material: in a typical dice game with 11 pre-composed
measures (corresponding to the numbers 2–12 producible with two dice) and a
piece duration of 16 measures, 1116 = 45, 949, 729, 863, 572, 161 (nearly fourty-six
quadrillion) works can be produced (Cope 1996, p. 2).
Random combinations are also central elements in Stockhausen’s piano piece XI
(1956), in which 19 score fragments are arbitrarily combined by the performer
(Troche 2018). Stochastic processes for music composition have also been explored
by composers such as Lejaren Hiller (Hiller and Isaacson 1958; Hiller and Isaac-
son 1959) and Gottfried Koenig (Koenig 1971). A separate musical genre named

31

CHAPTER 2. STATE OF THE ART

stochastic music was created by Iannis Xenakis (Xenakis 1966; Butchers 1968). A
number of other applications for stochastic procedures are feasible in algorithmic
composition (Jones 1981). In fact, many essential algorithmic composition models
are based on stochastic analyses and procedures, as will be shown in the following
sections.
An important fact pertaining to randomness in the context of algorithmic composi-
tion is that computers are not capable of generating genuine random numbers due to
their deterministic architecture. In order to provide ‘real’ random numbers, an ex-
ternal source of randomness has to be connected to the computer (Gentle 2006, p. 2).
Typically, external sources are not available and pseudo-random number generators
are used, which provide a seemingly arbitrary sequence of numbers. However, this
sequence repeats after a certain number of steps, referred to as cycle length (Stewart
2009, p. 626).

2.3.3 Markov Models

Markov models, named after the Russian mathematician Andrey Andreyevich Markov
(1856–1922), allow to predict future states of a system depending on a current state
(and optionally previous states). Markov models are used to stochastically predict a
chain of events, which is why Markov models are often referred to as Markov chains.
Formally, Markov models include a set of N states (S1, S2, . . . , SN) and a number
of discrete points of time t 2 N>0. The random variable qt represents a state Si

at point of time t. In other words, qt = Si indicates that the system is in state Si

at time t. The probability of the next state depending on the previous states can
be expressed as P (qt+1 = Sj|qt = Si, qt�1 = Sk, . . .). In first-order Markov models,
the next state is only dependent on the previous state, as mathematically defined
in Equation 2.1 (Alpaydin 2014, p. 418).

P (qt+1 = Sj|qt = Si, qt�1 = Sk, . . .) = P (qt+1 = Sj|qt = Si) (2.1)

If the transition probability from state Si to Sj is independent of time, the Markov
chain is said to be homogeneous with stationary transition probabilities as shown in
Equation 2.2 (Veerarajan 2002, p. 447; Alpaydin 2014, p. 418).

aij = P (qt+1 = Sj|qt = Si) (2.2)

The probabilities aij must be greater than or equal to zero and the sum of all
transition probabilities must be 1, as shown in Equation 2.3.

32

CHAPTER 2. STATE OF THE ART

NX

j=1

aij = 1 (2.3)

Furthermore, probabilities for the initial state of the system must be provided in
the form of a vector ⇧ = [⇡i], where ⇡i = P (q1 = Si) is the probability that the
system initially is in state Si. Likewise, the sum of the initial probabilities must be
1 as illustrated in Equation 2.4 (Alpaydin 2014, pp. 418f.).

NX

i=1

⇡i = 1 (2.4)

Markov models can be used for the algorithmic generation of arbitrary symbols,
which can be musical symbols such as notes, rests, pitches, chords or harmonies. In
order to model a Markov chain, a sequence of symbols is analyzed. In MPS, these
analyses can be performed with the developed analysis tools described in Chapter
7. The following graphs were generated using these tools.
As an example, the harmonic progressions in Yesterday by the Beatles are analyzed.
Figure 2.7a depicts a graph visualizing how often specific harmonic progressions
occur in the piece. A corresponding Markov model is presented in Figure 2.7b.
The probabilities aij for the corresponding harmonic progressions are computed by
dividing the number of absolute progressions depicted in Figure 2.7a by the total
number of outgoing connections for each harmony state.
The Markov model presented as a graph in Figure 2.7b can also be represented as a
matrix A = [aij] in which each transition probability is given as a number between
0 and 1. A Markov transition matrix for the harmonic progressions in Yesterday is
shown in Table 2.4. The probabilities in each row sum up to 1 by definition.
Higher-order Markov chains are used to consider more than one previous state to
determine the transition probabilities for the next state (Han and Kobayashi 2007,
p. 76f.). Another extension of Markov models are Hidden Markov Models (HMMs),
in which the models produce sequences of symbols (such as notes) based on internal
states and transitions which are not visible to the observer (Nierhaus 2009, p. 69ff.).
One of the first works concerned with the production of musical sequences using
Markov chains was contributed by Harry F. Olson, in which he proposed an “Elec-
tronic Music Composing Machine Employing a Random Probability System” (Olson
1967). The analog system contained a component designated as probability matrix
decoder, which was supplied with first and second order Markov chains of pitch
sequences analyzed from eleven Stephen Foster songs (Olson 1967, p. 431ff.).
The first known composition to be generated by a digital computer was the Illiac
Suite, which utilized Markov chains of different orders in the fourth movement titled

33

CHAPTER 2. STATE OF THE ART

F

Em7

2

Em

2

Asus4

3

G7 F/E

4

A7

2 2 4

Bb

3

Dm7

4

Dm

8

4

3

Dm/A

4

C7

4

Dm/C
4

4

C
4

G
4

8

4

4

(a) Harmonic progression graph of Yesterday by the Beatles. Edge labels
indicate the number of times a harmonic progression occurs in the piece.

F

Em7

1/6

Asus4

0.25

Em

1/6

G7

1/12

F/E

1/3

A7

1 11

0.2

0.2

Bb

0.6

Dm7

1

Dm

1

1

3/11

C7

4/11

Dm/A

4/11

Dm/C
1

0.5

C
0.5

1

1

G
1 1

(b) Markov model of harmonic progressions in Yesterday by the Beatles.
Edge labels indicate the probabilities for the corresponding transition.

Figure 2.7: Harmonic progression graph and corresponding Markov model of Yesterday by
the Beatles. The colors of the chords represent the consonance (green) or dissonance (red)
of the corresponding chord (see Chapter 7.4.4).

34

Table 2.4: Markov transition matrix of harmonic progressions in Yesterday by the Beatles. Each column represents a transition probability from
the harmony at the left in the corresponding row to the harmony at the top in the corresponding column.

F Em7 Em G7 Asus4 F/E A7 Dm/C Bb Dm7 Dm C Dm/A G C7

F 0 1

6

1

6

1

12

1

4

1

3
0 0 0 0 0 0 0 0 0

Em7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Em 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

G7 1

5
0 0 0 1

5
0 0 0 3

5
0 0 0 0 0 0

Asus4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

F/E 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

A7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Dm/C 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Bb 3

11
0 0 0 0 0 0 0 0 0 0 0 4

11
0 4

11

Dm7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Dm 0 0 0 0 0 0 0 1

2
0 0 0 1

2
0 0 0

Dm/A 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

C7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35

CHAPTER 2. STATE OF THE ART

Experiment Four (Hiller and Isaacson 1958). Markov models were also employed
by Iannis Xenakis in his works Analogique A, Analogique B and Syrmos (Xenakis
1992; Nierhaus 2009, p. 72).
Brooks et al. conducted Markov analyses up to the 8th order in a corpus of 37
chorales (Brooks et al. 1957). A work by Ponsford et al. engages in the generation
of chord progressions in the style of 17th-century dance music with Markov chains,
utilizing improvements of the applied techniques such as the segmentation of the cor-
pus into phrases and bars (Ponsford et al. 1999). A hierarchical approach is proposed
by Allan, in which multiple HMMs are used to generate chorale harmonisations in
the style of J. S. Bach (Allan 2002).
A number of works based on HMMs have been proposed for musical classification
tasks (Batlle and Cano 2000; Chai and Vercoe 2001; Pollastri and Simoncelli 2001;
Shao et al. 2004; Xu et al. 2005; Scaringella et al. 2006; Cheng et al. 2008; Fu et al.
2011).

2.3.4 Generative Grammars

The linguistic research foundations of generative grammars were proposed by Noam
Chomsky (Chomsky 1957; Chomsky 1959). A central aspect of both natural and
computer languages is syntax, which is concerned with the structure of possible
expressions in a certain language. The decision whether given sequences of input
symbols (which might be words in a natural language) are syntactically correct
involves building hierarchical structures called syntax trees in order to produce a
tree structure conforming to the given sequence of words.

Grammar Representations

Syntax trees are representations of possible choices in a set of so called rewriting
rules, which make up the grammar of a language. Rewriting rules are typically
specified in Backus–Naur form (BNF) introduced by John Backus and Peter Naur
in 1959 and contain non-terminal symbols on the left hand side, which may be
rewritten as a sequence of non-terminal or terminal symbols, which are given on
the right hand side, respectively. An example of BNF rules for simple mathematical
expressions is demonstrated in Listing 2.13.
An advancement of BNF is the Extended Backus–Naur form (EBNF) which allows
the definition of concatenations (,), alternatives (|), optional groups ([]) and rep-
etitions ({}), among other extensions. A grammar equivalent to 2.13 in EBNF is
specified in Listing 2.14. Note that non-terminals are not enclosed in triangluar
brackets anymore. Instead, terminals are surrounded by quotes.

36

CHAPTER 2. STATE OF THE ART
⌥ ⌅

1 <expression > ::= <term >
2 <expression > ::= <term > + <expression >
3 <term > ::= <term > * <factor >
4 <term > ::= <factor >
5 <factor > ::= (<expression >)
6 <factor > ::= <literal >
7 <literal > ::= <integer >
8 <integer > ::= <digit >
9 <integer > ::= <digit > <integer >

10 <digit > ::= 0
11 <digit > ::= 1
12 <digit > ::= 2
13 <digit > ::= 3
14 <digit > ::= 4
15 <digit > ::= 5
16 <digit > ::= 6
17 <digit > ::= 7
18 <digit > ::= 8
19 <digit > ::= 9⌃ ⇧

Listing 2.13: Grammar for simple mathematical expressions in Backus-Naur form

⌥ ⌅
1 expression ::= term | term , "+", expression
2 term ::= factor | term , "*", factor
3 factor ::= literal | "(", expression , ")"
4 literal ::= integer
5 integer ::= digit | digit integer
6 digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"⌃ ⇧

Listing 2.14: Grammar for simple mathematical expressions in Backus-Naur form

Chomsky Hierarchy

Chomsky differentiated between four types of grammars which constitute the Chom-
sky Hierarchy, which is summarized in Table 2.5. With increasing complexity of
grammars, more complex mechanisms are required to decide whether a specific in-
put is producible with a given grammar. In terms of the complex hierarchy, these
decision processes can be implemented in the form of specific automatons (Kumar
2010, p. 124ff.).

Table 2.5: Chomsky hierarchy

Type Description Complexity
Corresponding

Automaton

Type-0 Unrestricted
Grammar

undecidable
(up to infinite)

Non-deterministic Turing Ma-
chine

Type-1 Context-sensitive
Grammar

exponential Linear-bounded Automaton

Type-2 Context-free
Grammar

polynomial Pushdown Automaton

Type-3 Regular Grammar linear DFA or NFA

37

CHAPTER 2. STATE OF THE ART

Related Work

Systems using generative grammars can either be constructed in a knowledge-based
fashion, where authors explicitly subdivide given inputs in a hierarchical fashion
and formalize these divisions in terms of grammar rules, or by applying grammatical
interference, meaning that systems derive grammars for given inputs automatically
(Nierhaus 2009, p. 91).
Curtis Roads was one of the pioneers pursuing the idea of representing music in
terms of grammatical structures (Roads 1979). Inspired by the works of Heinrich
Schenker (Schenker 1935), Fred Lerdahl and Ray Jackendoff introduced an essen-
tial theory of tonal music based on generative mechanisms (Lerdahl and Jackendoff
1983). The hierarchical structure proposed in their works includes: Grouping struc-
ture, dividing pieces into sections and phrases, and metrical structure, representing
a hierarchy of accented and unaccented beats. The strategies of time-span reduc-
tion and prolongation reduction assign individual importance levels to pitches in
the above-mentioned structures. In contrast to solely linguistic generative theories,
the music theory of Lerdahl and Jackendoff provides mechanisms to differentiate
between the well-formedness of structural descriptions and the “musical coherence”
of the structures, which is examined with so called preference rules.

In a linguistic grammar, perhaps the most important distinction is gram-
maticality: whether or not a given string of words is a sentence in the
language in question. A subsidiary distinction is ambiguity: whether a
given string is assigned two or more structures with different meanings.
In music, on the other hand, grammaticality per se always plays a far less
important role, since almost any passage of music is potentially vastly
ambiguous. [. . .] The reason for this is that music is not tied down to
specific meanings and functions, as language is. In a sense, music is pure
structure, to be “played with” within certain bounds. The interesting
musical issues usually concern what is the most coherent or ‘preferred’
way to hear a passage. Musical grammar must be able to express these
preferences among interpretations, a function that is largely absent from
generative linguistic theory. (Lerdahl and Jackendoff 1983, p. 9)

Acting on the suggestion of Lerdahl and Jackendoff, Temperley and Sleator pub-
lished a theory for analyzing meter and harmony based on preference rules (Tem-
perley and Sleator 1999). Generative grammars were also used for creating circle
rounds, which are perpetually repeatable canons (Rader 1974), and for generating
children’s songs and folk songs (Sundberg and Lindblom 1976). Generative gram-
mars have also proved efficient to a certain extent in generating music in the style

38

CHAPTER 2. STATE OF THE ART

of French 18th century dance music and Lutheran chorales (Baroni et al. 1982). A
similar approach was used for the generation of musical phrases in the style of Franz
Schubert’s Lieder cycles (Camilleri 1982).
Grammar formalisms have also been applied for the representation of Javanese
Gamelan music (Hughes 1988; Hughes 1991; J. Becker and A. Becker 1979), the
music of a South African ethnic group (Blacking 1970) and Inuit music (Pelinski
1982). The studies of North Indian tabla drum music conducted by Bernard Bel
and Jim Kippen led to the development of a software system named Bol Processor8

for analysis and music generation based on generative grammars (Bel and Kippen
1992).
Grammatical mechanisms have also been used for the description of jazz chord pro-
gressions (Steedman 1984) and as a combined method for rhythms, chord sequences
and bass lines (Johnson-Laird 1991; Johnson-Laird 2002). Another approach is
taken by François Pachet analyzing whether the extent of expectation and surprise
is algorithmically detectable and reproducible (Pachet 1999). For detecting surpris-
ing progressions, Pachet applies a compression algorithm (Ziv and Lempel 1978),
which indicates how often specific sequences occur. Rarely occurring harmonic pro-
gressions are considered surprising. The system implements a method for grammar
inference for which a corpus of compositions is given as input. Several other systems
incorporating grammatical interference were proposed (Nevill-Manning and Witten
1997; Kohonen 1989). In advanced approaches, the generative capabilities of gram-
mars are combined with other models such as artificial neural networks (see Chapter
2.3.6) and evolutionary algorithms (see Chapter 2.3.7).

Summary

In summary, generative grammars form a basic foundation for analyzing and gener-
ating symbol sequences using underlying hierarchical structures. Depending on the
complexity of the grammar (see Table 2.5), systems of considerable expressiveness
can be constructed. As grammars are a concept rooted in linguistics, several issues
become apparent when applying grammars in a musical context, which are related
to different semantics and interpretations of music, which are not in all cases match-
able (Patel 2008). An essential aspect which is not covered by generative grammars
is vertical structure in music, i.e. processes taking place at multiple simultaneously
occurring levels, which is indispensable in the context of polyphonic music (Nierhaus
2009, p. 117).

8
http://bolprocessor.sourceforge.net/

39

http://bolprocessor.sourceforge.net/

CHAPTER 2. STATE OF THE ART

2.3.5 Transition Networks

Transition Networks (TNs) can be described by means of finite automata with in-
dividual states (visualized as graph nodes) and transitions (edges or arcs between
states). In Recursive Transition Networks (RTNs), transitions may refer to other
networks and furthermore allow direct or indirect references to themselves. A RTN
for simple natural language expressions is shown in Figure 2.8.

Pronoun (PN)Nomen (N)

Determiner (DET)

Verb (V)

Adjective (ADJ)

Nominal Phrase (NP)

Sentence (S)

A0

A1

large

small
white
black

V0 V1

likes

loves
saw

D0
D1

a

the
this

PN0 PN1

John

Paul

George

Ringo
I

you

we

N0 N1

cat

dog

fox

girl
boy

woman

man

NP0

NP1

DET
NP2

PN

ADJ

N

S0 S1NP S2V S3NP

Figure 2.8: Transition network for simple natural language expressions. Adapted from
Horáček et al. 2011.

To check if a given sequence of symbols is producible by a specific TN, the network
is traversed via corresponding arcs starting at the first state of the top-level network
(i.e. sentence in the example in Figure 2.8). This procedure is comparable to the
process of deciding whether a given sequence of tokens adheres to a given grammar
(see Chapter 2.3.4). The close relation between transition networks and generative

40

CHAPTER 2. STATE OF THE ART

Table 2.6: Transition network types and corresponding grammars

Transition
Network Type

Grammar
Type

Grammar
Name

Corresponding
Automaton

Recursive Transition Network Type-2 Context-free
Grammar

Pushdown
Automaton

Augmented Transition Network Type-0 Unrestricted
Grammar

Turing Machine

grammars is illustrated in Table 2.6, in which equivalent transition network and
grammar types are listed.
An extension to the presented model are Augmented Transition Networks (ATNs),
in which additional conditions, actions and jumps can be specified for each transition
(Nierhaus 2009, p. 122). This allows the detection and storage of additional context
information. For example, correct verb forms could be chosen according to the pre-
viously chosen nominal phrase in respect to singular/plural matching or appending
an s-suffix if the nominal phrase refers to the third singular person (Horáček et al.
2011).
A prominent music-centered system based on TNs is named Experiments in Musical
Intelligence (EMI). It was proposed by David Cope in 1981 and has been continu-
ously enhanced since (Cope 1991; Cope 1996; Cope 2000; Cope 2004; Cope 2009). In
EMI, advanced analysis methods are applied to a corpus of compositions in a certain
musical style in order to recombine the material to new pieces credibly reproducing
the analyzed style (thus referred to as style imitations).
EMI performs extensive analyses of the given corpus before transforming and re-
combining musical fragments similar to the musical dice game described in Chapter
2.3.2. The analysis model developed by Cope formally subdivides a given musical
piece in a hierarchical manner, resulting in assignments of formal musical meanings
for each musical event. The model is named SPEAC, abbreviating the following
elements (Cope 2000, p. 58):

• Statement

• Preparation

• Extension

• Antecedent

• Consequent

SPEAC structures for musical pieces can be built based on the following rules spec-
ifying possible SPEAC unit successors (Nierhaus 2009, p. 125):

41

CHAPTER 2. STATE OF THE ART
⌥ ⌅

1 S => P, E, A
2 P => S, A, C
3 E => S, P, A, C
4 A => E, C
5 C => S, P, E, A⌃ ⇧

Listing 2.15: Rules for producing SPEAC structures

When recombining new compositions, material is not arbitrarily selected, but ac-
cording to the assigned musical “function” obtained through SPEAC analysis, re-
sulting in musically coherent yet original style imitations.
Further strategies are implemented in EMI for enhancing style compliance. One of
these is to identify musical signatures, which are specified as follows:

Signatures are contiguous patterns which recur in two or more works
of a single composer and therefore indicate aspects of that composer’s
musical style. Signatures are typically two to five beats (four to ten
melodic notes) in length and usually consist of composites of melody,
harmony, and rhythm. Signatures typically occur between four and ten
times in any given work. (Cope 2004, p. 109)

In the process of identifying signatures, EMI searches for musical matches with a
certain tolerance. For example, pitch transpositions, interval alterations and rhyth-
mic variations are considered. The level of abstraction is increased until a specified
number of signatures is detected (Nierhaus 2009, p. 126). While the system gener-
ally aims to divide musical compositions into small reusable parts, the structure of
signatures must be retained in order to achieve credible style imitations. Therefore,
EMI does not subdivide signatures for recombination (Cope 2004, p. 109).
EMI also detects so called earmarks, which are characteristic musical hints appearing
“just before or just after important events” (Cope 2004, p. 114). With the help of
these markers, an example of which are cadential trills (Cope 2004, p. 112), the
structuring of generated pieces can be further improved.
Unifications are patterns relating to harmonic, thematic and rhythmic structures
(Cope 2004, pp. 122f.). In contrast to signatures, which capture styles of specific
composers in the scope of multiple pieces, unifications capture piece-specific pat-
terns. Initially, EMI analyzes the number of occurrences, locations and involved
variations of the detected unifications. During music generation, the program at-
tempts to recreate similar patterns of unifications in a similar or modified frequency
of occurrence (Cope 2004, p. 125).
The compositions generated by EMI are so convincing that Douglas Hofstadter,
author of the renowned book Gödel, Escher Bach: an Eternal Golden Braid, even
withdrew one of his ten prognoses stated in the book in 1979:

42

CHAPTER 2. STATE OF THE ART

Question: Will a computer program ever write beautiful music?
Speculation: Yes, but not soon. Music is a language of emotions, and
until programs have emotions as complex as ours, there is no way a pro-
gram will write anything beautiful. There can be ‘forgeries’ — shallow
imitations of the syntax of earlier music — but despite what one might
think at first, there is much more to musical expression than can be cap-
tured in syntactical rules. There will be no new kinds of beauty turned
up for a long time by computer music-composing programs. (Hofstadter
1979, p. 676)

In 1995, Hofstadter heard about EMI and was moved by a mazurka generated by
the program in the style of Chopin: “It was new, it was unmistakably Chopin-like in
spirit, and it was not emotionally empty. I was truly shaken. How could emotional
music be coming out of a program that had never heard a note, never lived a moment
of life, never had any emotions whatsoever? The more I grappled with this, the more
disturbed I became – but also fascinated.” (Cope 2004, p. 38)

2.3.6 Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically inspired models of interconnected
nerve cells, in which propagation and processing of neuronal signals is simulated.
The networks can be considered as a mathematical function, in which an input space
is mapped to an output space (Priddy and Keller 2005, p. 1). ANNs have proven
to be effective for a variety of applications including pattern recognition, computer
vision, prediction, optimization and automatic classification (Goodfellow et al. 2016;
Nierhaus 2009, p. 205).

Biological Foundations

Artificial neurons are modeled on their biological archetypes, which receive electrical
impulses through nerve fibers named dendrites. Depending on the inputs, the electric
potential of the neuron changes, which is regulated by changing the proportions of
sodium and potassium in the cell body (Priddy and Keller 2005, p. 2). If the
electric potential exceeds a certain threshold, the neuron “fires”, which results in
an action potential being transmitted over the so called axons, through which the
signal reaches synapses which in turn stimulate adjacent dendrites of other neurons.
According to current research, the human brain contains approximately 86 billion
interconnected neurons (Azevedo et al. 2009), enabling the parallel processing of
stimuli such as complex visual and acoustic information in time frames of about
0.1 seconds (Nierhaus 2009, p. 205). This is a major advantage of human brains

43

CHAPTER 2. STATE OF THE ART

compared to digital computers, in which each processor (core) executes instructions
sequentially (Krawczak 2013, p. 1).
The firing rate of neurons can vary between frequencies close to zero up to about
300 times per second, which is influenced by the neurotransmitter adrenaline in
biological neurons. Individual firing rates are modeled in ANNs by introducing
weighted connections between neurons, where higher weight coefficients correspond
to higher firing rates and vice versa (Priddy and Keller 2005, p. 2).

Network Topologies

Figure 2.9 shows basic artificial neural network topologies. An elementary type of
ANN are so called feedforward networks, in which the connections only point in
one direction. These networks, which are shown in various complexities in Figures
2.9a, 2.9b and 2.9c and are sometimes referred to as multi-layer perceptrons, are
typically used for tasks requiring abstraction, e.g. recognition tasks. An outstand-
ing feature of these networks is that they can be trained to perform certain tasks,
which simulates an artificial learning process (thus referred to as machine learning).
Learning capabilities are usually not attributed to computers, but can be imitated
by means of ANNs, among other models, to a certain degree and complexity. The
most frequently applied learning procedure is gradient descent, which minimizes the
differences between expected and actual outputs of neurons. A popular method
to compute gradients is back-propagation, which is a supervised training method
adjusting the connection weights of the network after propagating specific input
values through the network, comparing expected values with actual values in order
to compute differences, and propagating the errors back through the network while
adjusting corresponding connection weights (Rumelhart et al. 1986).
Advanced network topologies were developed for context-dependent applications,
which contain so called context neurons which are connected recursively, i.e. have
an output connection that directly or indirectly connects to the neuron itself as
input. This topology facilitates the consideration of previous network states. Well-
known examples for recurrent neural networks are Jordan Nets (Figure 2.9d) and
Elman Nets (Figure 2.9e). Other types of neural networks contain one layer of
completely interconnected neurons. Examples for such networks are Self-organizing
Maps (SOMs) (Kohonen 1982), Hopfield nets (Hopfield 1982) and Boltzmann ma-
chines (Hinton and Sejnowski 1986), which are suitable for automatic classification
and categorization tasks. A Hopfield net is presented in Figure 2.9f.
An advanced model suitable for both short-term and long-term dependencies em-
ploys elaborated building blocks named Long Short-Term Memory (LSTM) units
(Hochreiter and Schmidhuber 1997). These contain so called memory cells, input

44

Input Layer Output Layer

Hidden Layer

1

5

3

4

2

6

7

(a) Feedforward neural network with one
hidden layer

Hidden Layers

Output Layer

Input Layer

1 3

42 6

5

7

(b) Feedforward neural network with two
hidden layers

Input Layer

Hidden Layer

Output Layer

1

3

4

5

6

2 7

(c) Feedforward neural network in which
some connections skip the hidden layer

Input Layer

Output Layer

Hidden Layer

1 3

42 5

context
neuron

(d) Jordan network containing one context
neuron

Hidden Layer

Input Layer

Output Layer
1 3

42

context
neuron

5

context
neuron

(e) Elman network containing context neu-
rons for each neuron in the hidden layer

5

41

2 3

6

(f) Hopfield network in which all neurons
are interconnected. Neurons are consid-
ered both as input and output neurons.
Boltzmann Machines have a similar topol-
ogy with the difference that the contained
neurons are designated as hidden or visible
units.

Figure 2.9: Illustrations of various artificial neural network topologies. This figure shows three feedforward network architectures (a-c) and three
recursive network types (d-f).

45

CHAPTER 2. STATE OF THE ART

gates, output gates and forget gates. Neural nets with LSTM units were successfully
used for natural language processing, handwriting recognition, speech recognition,
grammar learning and image tagging (Bianchi et al. 2017, p. 25).

Related Work

Several approaches to utilizing ANNs for musical applications have been proposed.
Peter M. Todd discusses two approaches to represent time-dependent sequences in
neural networks: either successive points in time can be represented by means of
multiple neurons (meaning time is unfolded in terms of space), or the architecture
produces successive notes, whereupon previously generated notes are taken into
consideration. Todd uses the latter approach to develop a recurrent Jordan net for
generating melodies (Todd 1989). Todd also compares the functionality of ANNs to
Markov models (see Chapter 2.3.3). He points out that context-dependent neural
nets can in principle generate symbol sequences which do not occur in the training
corpus in exactly the same succession: “This lets [the network] produce new melodies
quite different from those it was originally trained on” (Todd 1989, p. 40).

HARMONET A system named HARMONET harmonizes melodies in the style
of J. S. Bach using recurrent neural networks and a rule-based system (Hild et al.
1992). The system generates a harmony sequence for each quarter beat by taking
previous harmonies, melody notes, the position within the current musical phrase
and beat stressing into account. The basic model consists of 106 input units, 20 out-
put units and a hidden layer with 70 units. An advanced version was implemented
using three neural nets for harmony generation in parallel, which were trained with
different temporal window sizes. The actual harmony used is determined by a ma-
jority decision of these three nets, and is subsequently processed by a neural net
for chord inversions and one concerned with “characteristic dissonances” (Hild et al.
1992, p. 271).

CONCERT Another recurrent neural network architecture named CONCERT
was proposed for predicting melody notes. Both the input and output layer of
the network represent the pitch, the duration and the harmonic accompaniment
of a note (Mozer 1994). The network successfully generates simple folk melodies,
soprano voices in the style of J. S. Bach and waltz melodies. In a listening experi-
ment, the neural net was considered to be superior to a third-order Markov system.
A drawback of the CONCERT network, however, is the lack of capabilities of struc-
turing music over longer periods of time, which is a common issue in algorithmic
composition (Mozer 1994; Nierhaus 2009, p. 219).

46

CHAPTER 2. STATE OF THE ART

Chorale Harmonization Bellgard and Tsang developed a system for chorale
harmonization based on Boltzmann Machines (Bellgard and Tsang 1994), which are
variants of Hopfield nets (see section 2.3.6). The system is trained with chorales
transposed into a common key. Additional constraints in the form of rules are
introduced to ensure a certain number of voices and to avoid voice crossings (Bellgard
and Tsang 1994, pp. 291f. Nierhaus 2009, pp. 219f.).

Music Classification Music classification has successfully be implemented using
ANNs in the fields of style classification (Dannenberg et al. 1997; Kiernan 2000) and
detecting the tonality of given musical sections (Tillmann et al. 2000).

Chord Prediction A neural network for predicting chord progressions was pro-
posed (Cunha and Ramalho 1999). A specific characteristic of the network is the
capability to adapt to new chord sequences captured in real time. This is imple-
mented by combining an ANN with a rule-based system, which detects recurrent
chord sequences during the performance.

LSTM Networks An LSTM-based system was proposed, which leverages the
functionality of memory units to build both short-term and long-term relations
for generated compositions (Eck and Schmidhuber 2002a; Eck and Schmidhuber
2002b). The system is capable of generating blues chord progressions and penta-
tonic melodies. Although LSTMs are capable of considering a larger context than
conventional recurrent neural networks, the system “reveals certain limitations in
terms of the generation of larger musical sections” (Nierhaus 2009, p. 221).
More recent systems incorporating LSTMs units successfully generated melodies
(Coca et al. 2013), melodies in conjunction with chords (Eck and Lapalme 2008),
drum patterns (Choi et al. 2016) and piano pieces (Svegliato 2017). LSTM networks
are also utilized in Google’s Magenta research project which focuses on machine
learning in the context of music and art. Successful applications of LSTM networks
were reported for piano transcriptions (Hawthorne et al. 2018) and for learning and
producing long-term music structures (Roberts et al. 2018). Furthermore, a network
was proposed producing not only a score, but also human-like expressive variations
in tempo and loudness (Oore et al. 2017).

2.3.7 Evolutionary Algorithms

Inspired by the principles of biological evolution (Darwin 1859), Evolutionary Com-
putation (EC) has become a widely used technique in computer science for solving
optimization problems. The employed Evolutionary Algorithms (EAs) apply the

47

CHAPTER 2. STATE OF THE ART

mechanisms of evolution such as selection, crossover and mutation to populations
of artificial individuals, which represent solutions to a previously modeled domain-
specific problem. EAs are applied in a great variety of fields such as logistics,
electrical engineering, industrial engineering, chemical and environmental engineer-
ing, image processing, mathematics, medicine, physics and arts (Coello Coello and
Lamont 2004; Romero and Machado 2008).
EAs are commonly used if the number of possible solutions for a specific problem
is so large that it is not feasible to enumerate all solutions. This is due to the
combinatorial plurality of search spaces, which is often not even manageable using
modern computers (Sarker and Coello Coello 2003, p. 170). EAs can be used to find
feasible solutions without checking every possible solution:

A popular way to solve a problem, answer a question, or in general derive
a suitable structure to fit a set of requirements, is to cast the problem or
question as a search problem, a technique central to artificial intelligence.
The goal is to look through the entire set of possible solutions to find
one that satisfies the original criteria; the trick is to structure the set of
all possible solutions so that one does not have to check every solution,
allowing the search to complete in a finite amount of time. (Jacob 1995)

The basic structure of EAs is outlined in Figure 2.10. Initially, a first generation
containing randomly generated solutions is created. The solutions are evaluated
by means of fitness functions, which assign comparable ratings to each solution.
For some applications, the evaluation process is straight-forward, e.g. if a specific
variable is to be minimized or maximized. However, this is not the case for all
problems, especially when aesthetic judgement of art or music is required, as will be
elaborated in Chapter 8.3.2.
As long as the optimization criteria are not specified, evolutionary algorithms gen-
erate new generations of individuals by selecting two individuals from the current
generation, recombining the chromosomes of these (crossover) and performing ran-
dom modifications in the chromosomes (mutation).
For the selection process, various methods are applied. The simplest alternative is
random selection. However, random selection is not optimal, since individuals with
relatively bad fitness are selected with the same probability as individuals with rela-
tively good fitness ratings. Hence, the probability of selection should proportionally
increase with higher fitness ratings. This is accomplished with fitness-proportionate
selection, also known as roulette wheel selection. Figuratively, each individual is
represented on a roulette wheel, whereupon the area on the roulette wheel is pro-
portional to the fitness of the respective individuals. Accordingly, individuals with

48

CHAPTER 2. STATE OF THE ARTEvolutionary Algorithm

Initialization

Selection

Crossover

Mutation

Optimization
Criteria met?

yes

no

Start

End

Evaluation

Create random individuals or
initialize with existing individuals

Assign fitness values to each individual
according to fitness function

Recombine artificial genes to new ones

Perform random modifications in artificial
genes

Select individuals for recombination

Figure 2.10: Flow chart illustrating the basic structure of an evolutionary algorithm

higher fitness are more likely to be selected and vice versa, as illustrated in Figure
2.11 (Luke 2013, p. 43).

P0

P1

P2

P3
…

Pn

Pn-1

Figure 2.11: Roulette wheel selection in evolutionary algorithms. The selection probability
Pi is proportional to the fitness of the corresponding n individuals.

Another frequently used selection strategy is tournament selection, where k random
individuals are chosen from the current population and the best-rated individual
of these is selected. The parameter k is called tournament size. Crossover and
mutation techniques are introduced in the following sections.

49

CHAPTER 2. STATE OF THE ART

The first ideas for EAs were published by Friedberg et al. (Friedberg 1958; Fried-
berg et al. 1959). Later, four essential approaches were proposed: evolutionary
programming (Fogel et al. 1966), evolutionary strategies (Rechenberg 1973), genetic
algorithms (Holland 1975) and genetic programming (Koza 1992). The differences
in the mentioned techniques lie in the details of genetic representations, selection
criteria and the implementation of crossover and mutation operations (Sivanandam
and Deepa 2007, p. 2). In the following, the differences are illustrated on the basis of
the most common paradigms Genetic Algorithms (GAs) and Genetic Programming
(GP).

Genetic Algorithms

GAs remain one of the most commonly implemented form of EAs (Ghanea-Hercock
2003). In GAs, chromosomes are usually represented as fixed-length bit strings, i.e.
sequences of zeros and ones, which are interpretable as one or more binary numbers
(Sivanandam and Deepa 2007, p. 2).
A commonly used crossover operator is bit-string crossover, which crosses two chro-
mosomes by swapping a sub-sequence of bits between the bit strings, as shown in
Figure 2.12. The beginning of the sub-sequence is referred to as crossover point
(Sivanandam and Deepa 2007, p. 3).

0 1 1 0 1 1 0 1

1 1 0 1 0 0 1 0

Parents

0 1 1 0 1 0 1 0

1 1 0 1 0 1 0 1

Offspring

Crossover
Point

0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1

Bit flip mutation

Figure 2.12: Genetic algorithm one point crossover

In the simplest case, mutation can be implemented by inverting a bit in the chro-
mosome, which is illustrated in Figure 2.13. A variety of alternative operations are
possible for both crossover and mutation (Sivanandam and Deepa 2007).

0 1 1 0 1 1 0 1

1 1 0 1 0 0 1 0

Parents

0 1 1 0 1 0 1 0

1 1 0 1 0 1 0 1

Offspring

Crossover
Point

0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1

Bit flip mutation

Figure 2.13: Genetic algorithm bit flip mutation

50

CHAPTER 2. STATE OF THE ART

Related Work In the following, essential contributions in the field of music gen-
eration using GAs are introduced and discussed.

Thematic Bridging Horner and Goldberg proposed a GA-based approach to the-
matic bridging, which aims at transforming “an initial musical pattern to some final
pattern over a specified duration” (Horner and Goldberg 1991). This is achieved by
performing modifications on the initial pattern such as adding, deleting, changing
or reordering elements. A transition of the initial pattern is constructed by concate-
nating all intermediate results of the transformations. The chromosomes encode
a sequence of operations and operands (e.g. indices of elements to be modified)
belonging to the operations.

GenJam John Al Biles developed an interactive system capable of evolving jazz
solos using a genetic algorithm. The system maintains two separate populations of
bit strings representing phrases and measures. Measures contain strings of 16 differ-
ent musical instructions, which are rest, hold or one of 14 possible pitches. Events of
the type hold can also cross measure boundaries. Phrases contain references to four
measures of the measure population, respectively. The first version of the system
uses a human mentor for evaluating results (Biles 1994).
The system uses crossover and mutation operators for both populations which are
designed in such a way that appealing phrases and measures are not modified in a
musically inappropriate way, for example by assuring that crossover will not produce
large melodic gaps. The pitches in the measure chromosomes represent degrees on
scales, which are in turn chosen in order to match a chord in a predefined chord
progression. In this way, Biles assures that all output notes are “correct” in a musical
sense (Biles 2007b; Biles 2007a). Regarding disadvantages of the system, the author
states:

Two obvious disadvantages to GenJam’s scheme are that notes occur
only in eighth note multiples, and there are only 14 pitches to choose
from at any one time. These certainly would be a noticeable limitation on
most human improvisers, but allowing greater rhythmic and chromatic
diversity would increase the string lengths needed for measures, thereby
exploding the size of the space searched by the measure population.
(Biles 1994, p. 134).

Variations Variations is a GA-based composition system developed by Bruce
Jacob (Jacob 1995). It consists of three modules: composer, ear and arranger.
While the purpose of the composer is exclusively to produce musical material, the

51

CHAPTER 2. STATE OF THE ART

ear is responsible for filtering out unsatisfactory material and the arranger module
assembles the remaining phrases to form an orchestrated piece.
Given a set of initial motives, the system creates variations of the motives using
a number of defined transformations and combines them to form phrases. These
are evaluated by the ear module, which is evolved to fit the taste of a human user
regarding harmonic progressions.

Melodic Development David Ralley developed a system for melodic develop-
ment of phrases. The chromosomes contain a start pitch in a scale and an offset-
based list of pitches. It produces “interesting melodic variations of initial material”
(Ralley 1995). However, the author mentions that “the acceptability of the final
melodic material is entirely up to the user” (Ralley 1995).

Jazz Music Various works have been proposed concerned with Jazz music gener-
ation based on GAs. An evolutionary algorithm generating responses to call phrases
in jazz pieces by evolutionary means was proposed (Spector and Alpern 1995). The
fitness function was implemented by means of an ANN (see Chapter 2.3.6). Yet,
the accuracy of the ratings was not reliable due to the fact that too few negative
(poorly rated) samples were used during training (Johanson and Poli 1998).
GAs were also employed for generating jazz melodies (Papadopoulos and Wiggins
1998). In the proposed algorithm, domain-specific operators are implemented. The
proposed fitness function takes intervals, pitch patterns, suspensions, beat positions,
note and rest durations, contour and speed into account.

GeNotator GeNotator is a generative music system based on GAs (Thywissen
1996; Thywissen 1999). The genotype structure contains information about choice
sequences in a musical grammar. By means of the grammar, musical elements such
as “scales, keys, rhythms, phrases and larger compositional structures” can be speci-
fied hierarchically. The grammar also supports transformational rules incorporating
modifications, for example transpositions, retrogrades and inversions (Thywissen
1999). The system also features a GUI for editing musical grammars, configuring
the algorithm and providing feedback.

Grammatical Evolution Grammatical Evolution (GE) is a technique in which
programs or expressions in a specified language are evolved. To this end, gram-
mar rule decisions are encoded in the chromosomes using integer numbers. A first
approach was presented in 1996 (Putnam 1996). Later, a system which maps geno-

52

CHAPTER 2. STATE OF THE ART

types to AP4409 programs was reported (Ortega et al. 2002). GE was also utilized
to create novel piano pieces including runs, turns and arpeggios using tonal statistics
as fitness criteria (Loughran et al. 2015).

Statistical Approaches Alfonseca et al. propose a generic fitness function for
evolutionary music generation based on the normalized information distance metric
(Li, Chen, et al. 2004; Alfonseca et al. 2006; Alfonseca et al. 2007). It is a universal
similarity metric computable by means of Kolgomorov complexity, which evaluates
whether a given string or string pattern can be generated by means of a computer
program which is shorter than the string itself (Li and P. Vitányi 2013). If this is the
case, the string is considered compressible. Unfortunately, Kolgomorov complexities
are not directly computable. However, an estimation function, which is provided
in Equation 2.5, was reported (Cilibrasi and P. M. Vitányi 2005), where xy is the
concatenation of x and y and C(x) is the resulting length after compressing the
string x with compressor C. Based on previous research results, a LZ77 compressor
was chosen (Alfonseca et al. 2006).

d̂(x, y) =
C(xy) � min{C(x), C(y)}

max{C(x), C(y)} (2.5)

This generic distance function is suitable for computing the similarity of two arbi-
trary inputs, which was successfully utilized for music classification and clustering
algorithms without providing further domain-specific knowledge (Cilibrasi, P. M.
Vitányi, and Wolf 2004). When comparing evolved compositions to a given set of
“guide-compositions” using this metric, the evolutionary algorithm will automati-
cally produce results with similar features if the distance is minimized (Alfonseca
et al. 2006; Alfonseca et al. 2007).

GenDash In GenDash, a GA-based program proposed by Rodney Waschka II,
the evolutionary process itself is reflected in the generated compositions. In partic-
ular, the algorithm does not produce a final result at the end, but rather interprets
the developments throughout the whole algorithm run as a musical composition
(Waschka II 2007).

Hybrid Approaches NEUROGEN is a genetic algorithm capable of producing
western four-part harmony works in the style of traditional hymns. Compositions
are generated in three stages. In the first stage, only rhythms are evolved, followed
by additional pitches in the second stage. Finally, the previously produced phrases
are combined in the last stage. A hybrid approach is chosen in which an ANN

9AP440 is an auxiliary sound language for IBM’s APL2

53

CHAPTER 2. STATE OF THE ART

trained with the help of existing pieces fulfills the role of a musical judge, yielding
promising results (Gibson and Byrne 1991).
Eigenfeldt reported a system for generating polyphonic rhythms using GAs (Eigen-
feldt 2009). In his system named Kinetic Engine, existing compositions are analyzed
by means of Markov chains (see Chapter 2.3.3). The goal of the system is not to
evolve a single final solution, but to interpret the evolutionary process itself as a
composition, which was also proposed in the GenDash system. The chromosomes
consist of integer numbers corresponding to indices in a database of short rhythmic
sequences, each representing a beat. The kinetic engine analyzes rhythms in regard
to density, complexity and similarity in order to evolve new rhythms. In subsequent
publications, Eigenfeldt reported extensions of the system which also enabled the
generation of pitches (Eigenfeldt 2012; Eigenfeldt and Pasquier 2012).

Genetic Programming

GP is a variant of an evolutionary algorithm proposed by John R. Koza (Koza 1992).
In contrast to the evolutionary techniques introduced so far, genetic programming
uses tree structures for chromosome representation instead of bit strings. Trees are
versatile data structures in which a variety of information can be encoded (Storer
2002, pp. 127ff.). In GP, trees are typically used to represent programs. However,
these can be abstracted to arbitrary structures in a variety of domains (Yu 1999).

Genetic programming (GP) is an evolutionary computation (EC) tech-
nique that automatically solves problems without requiring the user to
know or specify the form or structure of the solution in advance. At
the most abstract level GP is a systematic, domain-independent method
for getting computers to solve problems automatically starting from a
high-level statement of what needs to be done. (Poli et al. 2008, p. 1)

For the illustration of typical GP data structures and operations, a subtree crossover
is demonstrated in Figure 2.14. Mutation is typically implemented in the form of
subtree mutation, in which a random node is replaced with a randomly generated
subtree (Poli et al. 2008, pp. 16f).

Related Work GP-based systems related to music processing and generation are
introduced in the following sections.

GPmuse GPmuse is a GP-based system attempting to generate 16th-century
counterpoint music (Polito et al. 1997). Given a main melody (cantus firmus),
GPmuse adds new voices consistent with counterpoint-specific rules. Phrases are

54

CHAPTER 2. STATE OF THE ART

Offspring: (1+y)-((2+x)/7)Parent 1: (2+x)*3 Parent 2: (1+y)-(x/7)

*

+ 3Crossover
Point

2 x

-

+ /

1 y x 7

Crossover
Point

-

+ /

1 y + 7

2 x

(a) Parent 1: (2 + x) ⇤ 3

Offspring: (1+y)-((2+x)/7)Parent 1: (2+x)*3 Parent 2: (1+y)-(x/7)

*

+ 3Crossover
Point

2 x

-

+ /

1 y x 7

Crossover
Point

-

+ /

1 y + 7

2 x

(b) Parent 2: (1 + y) � (x
7
)

Offspring: (1+y)-((2+x)/7)Parent 1: (2+x)*3 Parent 2: (1+y)-(x/7)

*

+ 3Crossover
Point

2 x

-

+ /

1 y x 7

Crossover
Point

-

+ /

1 y + 7

2 x

(c) Resulting offspring: (1 + y) � 2+x
7

Figure 2.14: Illustration of subtree crossover in genetic programming. Random nodes were
selected as crossover points in the two parent individuals, which represent the mathematical
expressions (2 + x) ⇤ 3 and (1 + y) � x

7
. The offspring results from replacing the subtree

defined by the crossover point in parent 2 with the subtree defined by the crossover point
in parent 1.

55

CHAPTER 2. STATE OF THE ART

also imitated, i.e. repeated asynchronously and in transposed versions. According
to the authors, a surprising outcome of the research project was that the generation
of music according to 16th century counterpoint rules partly yielded compositions
that sounded rather like 20th century music.

Music Genie Music Genie is an environment to process music represented in the
SARAH language, which was already introduced in Chapter 2.1.9. A GP process for
“crossbreeding” compositions is available, in which users effectively take the part of
the fitness function by manually selecting favourite compositions. Mutation opera-
tors include: inserting random transforms, changing numeric transform parameters,
inserting and removing part references, changing brace types, adding new random
parts and removing parts. Crossover recombines individual genes (parts) and con-
siders preserving the consistency of referenced parts in the parents, if the referenced
parts were also selected to be copied to the new individual. Otherwise, a simple
heuristic based on gene positions is used to re-associate references with other exist-
ing parts (Fox 2006, p. 3). Music Genie produced variations of an extract of J. S.
Bach’s Well-Tempered Clavier, which was additionally crossbred with the pop song
Wannabe by the Spice Girls (Fox 2006, p. 4).

Hybrid Approaches Spector and Alpern reported a GP-based approach for gen-
erating Bebop jazz melodies. In their work, a so called case-base of existing musical
works can be supplied by the user, as well as additional “critical criteria” (Spector
and Alpern 1994). By creating programs which operate on the input compositions,
the system creates new compositions in a “trading four” mode known from jazz
improvisation, meaning that short sequences with durations of four measures are
given as input, and the system responds with an evolved sequence also comprising
four measures. Evaluation criteria are: tonal novelty balance, rhythmic novelty bal-
ance, tonal response balance and rhythmic coherence (Spector and Alpern 1994). In
a proposed system extension, ANNs are used to “automatically induce structural
principles underlying a corpus of jazz melodies” to “distinguish reasonable from
unreasonable melodies” (Spector and Alpern 1995). The authors report that evalu-
ation results with a single neural network were unsatisfactory. Therefore, a hybrid
symbolic/neural “critics community”, each critic having a “complementary type of
expertise”, was used for composition evaluation, leading to better results (Spector
and Alpern 1995).
GP-Music is an interactive system which combines a GP approach with ANNs (Jo-
hanson and Poli 1998). The system is capable of generating small musical sequences,
however it is not possible to evolve polyphonic music. Notes are of constant dura-

56

CHAPTER 2. STATE OF THE ART

tion and the pitch space is limited to two octaves. In its basic version, the evolved
phrases are evaluated by the user. An extension was developed in which a neural
network was trained according to the user’s preferences and therefore could replace
the user, making the system autonomous. Automatically rated runs sometimes pro-
duced pleasant results. However, the performance was not consistent and the results
were not as good as when evaluated by humans (Johanson and Poli 1998).
Manaris et al. proposed an evolutionary framework in which the fitness function
relies on Zipf’s law. It states that the frequencies of symbols (e.g. words in a book
or pitches and note durations in music) are inversely proportional to the ranks of
the corresponding symbol according to the formula p(n) ⇠ n�a, where a is close to
-1 (Manaris, Vaughan, et al. 2003; Saichev et al. 2009). In other words, the most
frequent symbol appears about twice as often as the second most frequent symbol,
and so on. This correlation was later extended by Benoît Mandelbrot, who observed
natural phenomena with distributions ranging from a = 0 (random phenomena) to
a = �1 (monotonous phenomena), referred to as power law distributions (Mandel-
brot 2003). The validity of the Zipf-Mandelbrot law was tested using a corpus of 220
pieces in MIDI format. The occurrences of the following symbol combinations were
analyzed: pitch, pitch class, duration, pitch & duration, melodic intervals, harmonic
intervals, melodic bigrams, harmonic bigrams, melodic trigrams and higher-order
melodic intervals (changes of changes in melodic intervals). The results suggest
that the Zipf-Mandelbrot law is a “necessary, bot not sufficient condition” for aes-
thetically pleasing music which can be used as a fitness function in evolutionary
algorithms (Manaris, Vaughan, et al. 2003; Manaris, Machado, et al. 2005). The
system was later extended with an ANN predicting the “popularity” of musical pieces
(Manaris, Roos, et al. 2007).

57

CHAPTER 2. STATE OF THE ART

2.4 Summary

In this chapter, theoretical foundations of music representation, creativity research
and algorithmic composition were presented. By combining adequate data models
and algorithms, several aspects of musical creativity can de facto be imitated by
computers, including:

1. Recognition, categorization and reproduction of musical styles (see Chapters
2.3.3, 2.3.4, 2.3.5 and 2.3.6)

2. The ability to learn musical structures and styles automatically (see Chapter
2.3.6)

3. Generation of musical sequences based on models of varying complexity (see
Chapters 2.3.2, 2.3.3 and 2.3.6)

4. Generation of musical structures with underlying hierarchical models (see
Chapters 2.3.4, 2.3.5 and 2.3.7)

5. Exhaustive combination of musical elements and aspects, including heuristics
to effectively search large possibility spaces 2.3.7

Virtually all of the proposed systems output music in terms of note and rest se-
quences. The primary concern of this work is to evaluate whether better outcomes
can be achieved by combining more complex music models with the introduced al-
gorithms. In the following chapters 3 and 4, new music representation models with
certain advantages compared to the presented models are introduced, on the basis
of which musical applications are developed in chapters 5, 6 and 7. Thereafter, an
algorithm imitating selected aspects of creativity is designed in Chapter 8.

58

Chapter 3

Context Layer Composition Model

I do not perform any miracles.
I am merely exact.

— Bohuslav Martinů (Safranek
2013)

Computer programs with the purpose of creating, manipulating or processing musi-
cal data require an internal representation of music. Computers utilize abstract data
models for representing circumstances of the real world. Internally (i.e. in computer
memory and other digital storage media), all instructions and data are represented
in terms of numbers (Patterson and Hennessy 2008). In digital computers, a binary
number encoding system is employed which uses only two digits, namely 0 and 1.
These two digits can physically be represented using electrical signals carrying low
voltage or high voltage, respectively (Warford 2017). These digits can be interpreted
as integer or floating point numbers, characters, symbols, pixels of images, sound
samples and complex object structures (Fenwick 2014; Steinberg et al. 2008). For
instance, in music applications these objects could be notes, chords, rests or loudness
instructions.
Data models define which types of symbols or elements are needed for an application,
how the contained data is represented and how these elements are associated with
each other. Nowadays, advanced software tools are available to construct computer
data models. Refer to section 4.10.1 for detailed information about the development
of the MPS data model.
Most computer systems processing musical data operate on sequential, time-based
models that describe music as (one or multiple) sequences of notes and rests. This
seems to be an adequate representation when considering that the common form
of music notation are scores, which primarily contain sequences of notes, rests and

59

CHAPTER 3. CONTEXT LAYER COMPOSITION MODEL

instructions how these are to be played. While sequential representations are suit-
able for many computer-aided music processing scenarios and also convenient for
performing musicians, these are not sufficient for describing all aspects and relations
of musical compositions from a composer’s point of view.

There are myriad time-based models that could be used for generating
music, and many composers have explored their possibilities. The fact
that a process is formally defined as a function of time does not in any
way ensure that the musical outcome will be engaging, nor even that the
temporal dynamics can be appreciated by the listener. (Husbands et al.
2007, p. 21)

In this dissertation, two advanced models are proposed which are designed to accom-
modate contextual musical information of various musical dimensions and relations
among these.

3.1 Motivation

Imagine a single sound event or note being isolated from the rest of a composition.
This note or sound would not have the same significance anymore. This is because
the meaning of each sound only becomes apparent when considering its musical
context.
To illustrate this, consider the following thought experiment: imagine a database
containing a large corpus of compositions stored in a sequence-oriented digital for-
mat. The goal is to find occurrences of a musical fragment within the corpus. For
instance, we could search for the motif of Ludwig van Beethoven’s Symphony No. 5
in C minor, Op. 67 shown in Figure 3.1.

42!!! "# $"Piano %"&

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 3.1: Ludwig van Beethoven, Symphony No. 5 in C Minor, Op. 67, Mv. I, motif

Our search query, however, still needs additional clarification. How should the motif
that we search for be matched exactly with the material in the corpus? We could
think of various alternatives, for example:

1. Look for a perfect match, considering both the rhythm ? ˇ “(ˇ “(ˇ “(˘ “ and the pitch
sequence G G G Eb.

2. Search only for matches of the rhythm ? ˇ “(ˇ “(ˇ “(˘ “
60

CHAPTER 3. CONTEXT LAYER COMPOSITION MODEL

3. Consider only pitches and look for the pitch sequence G G G Eb.

4. Consider the relative distance of the pitches and look for three equal pitches
in a row followed by a pitch which is a perfect third lower.

5. Focus on the harmonic context C minor, allowing to interpret the pitches as
fifths and a minor third relative to the tonic. Find these intervals either in C
minor or in an arbitrary other minor key.

6. Interpret the pitches as degrees on a scale (5 5 5 3). This abstraction enables
the search of the identified degree pattern in arbitrary keys (including major
keys).

A variety of other search query variants and combinations are possible. Depending
on the query used, various matches will be found in the corpus. The important
question now is: are the matches found in our corpus musically equivalent with
Beethoven’s motif? This can only be answered adequately if the musical context
of each match is analyzed.
An important musical context, for example, is the metric context. The metric
context of the original rhythm is a 2

4
time signature. By analyzing the rhythmic

relation to the time signature, it becomes apparent that the first eighth note is
part of a syncopation due to the left out strong pulse on the very first beat in the
measure. When positioning the rhythm in a measure at a different point of time
or in a measure with a different time signature, the musical meaning of the rhythm
changes as well. In conclusion, even if a perfect rhythmic match would be found in
the database, this would not automatically imply a musical equivalence. The latter
could only be ascertained by analyzing its relation to the metric context.
Similarly, if the exact pitch sequence G G G Eb would be found in another piece, no
musical correspondence would directly be implied. Pitches, especially in tonal music,
have to be considered in relation to the respective harmonic context. For example,
in the key Eb major the pitches G G G Eb would have another musical function
than in the parallel key C minor. In Eb major, G has the function of a major third
and Eb is considered the tonic. On the contrary, in the key C minor G is considered
a perfect fifth and Eb represents a minor third relative to the tonic. Harmonic
contexts can be nested hierarchically, why in some cases multiple harmonic contexts
have to be taken into account. Refer to sections 4.5.6 and 4.5.8 for a more detailed
discussion on scales and harmonic contexts.
In summary, comparing note sequences is not sufficient to find musical analogies
between compositions. In order to conduct musically adequate comparisons, other
musical context dimensions have to be taken into account. Simple note-based models

61

CHAPTER 3. CONTEXT LAYER COMPOSITION MODEL

are not capable of explicitly encoding all relevant contexts. For this reason, models
capable of representing musical context information more explicitly are proposed in
this dissertation.
MPS provides the functionality to perform context-dependent search operations in
musical corpora, providing musically adequate search facilities as would be required
in the proposed thought experiment. This topic is covered in Chapter 6.

3.2 Introductory Example

The first model proposed in this dissertation is the so called context layer model.
As an example, a context layer model of the first four measures of the well-known
Beatles song Hey Jude is presented along with the corresponding score in Figure
3.3. All model representations in this dissertation follow a consistent color scheme,
which is explained in Figure 3.2. Colors

Meter

Rhythm

Instrument

Pitch

Loudness

Harmony

Lyrics

Control
Structure

Fragment

Musical Structures Logical Structures

Figure 3.2: Legend illustrating the color scheme of model elements presented in this dis-
sertation

3.3 Model Structure

Context layer models contain one or multiple streams which are comparable to voices
or parts in scores. Each staff in a score is represented by at least one stream. A
single part is divided into multiple streams if it in turn contains multiple voices (e.g.
a fugue in four voices might be notated in two piano staves, however the context
layer model representation will contain four streams).

62

!
r

"# F"
bet

"
te

"$ "
don't

"
make

"
it

C

"
bad

! " "
a

Vocals

take

N.C."% & '
Hey

F
"

Jude

"
song

("
and

"
make

"
it

C7"
sad

Music engraving by LilyPond 2.18.2—www.lilypond.org

(a) Vocal part of Hey Jude by the Beatles, mm. 1–4
Instrument (1) vocals

Meter (5) 4/4 time 4/4 time 4/4 time 4/4 time 4/4 time

Tempo (1) tempo 72

Key (1) F

Harmony (5) F C C7 F

Harmonic Rhythm (5) 1 1 1 1

Scale (1) major

Rhythm (21) 4 4 _4. 8 8 8 4 _2 8 8 4 4 _8 8 8 8 8 16 16 4 _2

Degrees (18) 4 2 2 4 5 1 1 2 3 7 7 6 4 5 4 3 2

Pitches (18) C5 A A C5 D5 G G A Bb F5 F5 E5 C5 D5 C5 Bb A

Loudness (1) loudness mf

Lyrics (18) Hey Jude don't make it bad take a sad song and make it bet- te- - r

Score Label (1) Verse

St
re

am
 1

Time (Measures) 1 2 3 4 5

Time (Absolute) -1 / 4 0 1 2 3

(b) Context layer model of Hey Jude by the Beatles, mm. 1–4, vocal part. It represents the composition in terms of individual context layers,
including an instrumental context, metric contexts, harmonic contexts, rhythmic contexts, tonal contexts, lyrics and logical contexts. At the
bottom of the model, timelines for measures and absolute time are shown.

Figure 3.3: Score and context layer model of Hey Jude by the Beatles, mm. 1–4. Corresponding files are available on the accompanying CD under
Examples/Compositions/Beatles/HeyJude/Leadsheet (see Appendix A).

63

CHAPTER 3. CONTEXT LAYER COMPOSITION MODEL

Streams contain individual layers for various musical context dimensions, which
are explained in the following sections. The layers in turn contain time-dependent
context elements, each of which have a start time and a duration. Technical details
of time representation are set out in section 3.4.

3.3.1 Instrumentation Context

The instrument layer specifies which instruments are used at which point of time in
a stream. In the context layer model in Figure 3.3b, this context never changes and
indicates a vocal part.

3.3.2 Metric Contexts

The metric layer contains time signatures, the start times and durations of which
represent measures. Note that pieces may commence with an anacrusis (also known
as pickup or upbeat) which implies a shortened initial measure (see Chapter 4.5.1).
The measure numbers are shown in a timeline at the bottom of the layer model
visualization.
The current tempo is determined by an individual context layer. It usually contains
elements specifying constant tempi, as shown in the example in Figure 3.3b. Mul-
tiple constant tempo specifications can be used to model sudden tempo changes.
The tempo layer also supports gradual tempo changes to model accelerando and
decelerando.

3.3.3 Harmonic Contexts

The current key context of each stream is given by a correspondent context layer.
Note that each stream can have individual keys, enabling multi-tonal music. An-
other harmonic context is given by context harmonies, which usually change more
frequently than keys. In the Hey Jude example in Figure 3.3b, the key remains
constant while the context harmonies change in each measure.

3.3.4 Rhythmic Contexts

Rhythm is one of the most essential dimensions in music. This is also reflected in
context layer models: rhythmic context layers are obligatory for each stream. The
rhythmic dimension defines the proportional durations of the notes or sound events
produced by the stream. Another rhythmic dimension is the harmonic rhythm,
which specifies the durations of context harmonies.

64

CHAPTER 3. CONTEXT LAYER COMPOSITION MODEL

3.3.5 Pitch Contexts

The context layer model in Figure 3.3b also contains context layers regarding pitches,
namely Scale, Degrees and Pitches. Often pitches are derived from a contextually
suitable scale, on which pitches are addressed using scale degrees. In the example
in Figure 3.3b, pitches are derived from the F major scale (which in turn matches
the key context) using zero-based scale degrees. For example, the degree 0 will
resolve to F, 1 to G, 2 to A, 3 to B[and so on. The resulting absolute note names
(including the octave) are visible in the pitch context layer. If no octave is specified,
the middle octave, which is encoded as octave with number 4 according to Scientific
Pitch Notation (SPN), is implied (see section 4.5.5 for more details).

3.3.6 Loudness Contexts

Another musical context layer represents the progress of loudness throughout the
musical stream. It contains elements with static loudness instructions such as forte
or piano. Gradual loudness progressions are also supported to model crescendo and
decrescendo.
Another loudness-related context layer, which is not covered in the previous ex-
ample, accommodates dynamic accents such as sforzando (notated as sfz, sf or fz),
sforzando immediately followed by piano (sfp), rinforzando (rfz) or fortepiano, forte
immediately followed by piano (fp).

3.3.7 Lyrics

Vocal streams can contain lyrics as an individual context. By using this layer,
syllables can be assigned to individual notes as shown in Figure 3.3b.

3.3.8 Musical Labels

Another context can be supplied in the form of labels for individuals parts of a
composition. These could be, for example: Verse, Chorus, Bridge, Solo for popular
music (as demonstrated in Figure 3.3b), or Exposition, Development and Recapitu-
lation for a piece based on a sonata form.

3.3.9 Custom Contexts

MPS provides a number of default context layer types, most of which have been
discussed in the previous sections. Yet, the number of layers is not fixed and the
model was designed to be extensible in order to accommodate arbitrary new context

65

CHAPTER 3. CONTEXT LAYER COMPOSITION MODEL

layers. For example, new context dimensions for positions in space or the emotional
character of certain sections could be added. Refer to section 4.5.10 for detailed
instructions on how to add custom context layers.

3.4 Time Model

Each context layer model has an internal timeline which by definition starts at t = 0

at the beginning of the first full measure. The earliest point in time can become
negative in the case of anacruses at the beginning of the piece, as shown in the
example in Figure 3.3b, which starts at t = �1

4
due to the upbeat.

In order to synchronize all individual context layer elements throughout composi-
tions, the start times and durations of each model element must be stored accurately.
A first approach was to use floating point numbers. However, the internal represen-
tation of floating point numbers can be problematic under certain conditions. Even
simple arithmetic operations with seemingly trivial floating point numbers can re-
sult in erroneous outputs. As an example, consider the expression 2.0 � 1.1. When
printing the result of this expression using the Java programming language and
a current runtime environment, the output reveals inaccuracies regarding floating
point encoding: the result is not 0.9 as expected, but 0.8999999999999999. This is
due to the commonly used encoding for floating point numbers as defined by the
standard IEEE 754 (IEEE 1985).
In Java and many other common programming languages, two types of floating point
data types are supported: float, corresponding to 32-bit IEEE-754 binary floating
point representation, and double, using a 64-bit representation offering higher pre-
cision. According to the specification, decimal fractions are represented in terms of
negative powers of two. This leads to a situation in which negative powers of two,
such as 1

2
, 1

4
, 1

8
and so on can be precisely represented. Other decimal fractions,

however, may not be representable as a sum of these fractions. In particular, com-
monly used negative exponent fractions of 10 (such as 1

10
) can not be represented as

a finite-length binary fraction (Bloch 2018, pp. 270ff.).
While in the musical domain many durations are based on fractions of two, this is by
far not true for all rhythmical and durational constructions. For example, when using
tuplets (such as triplets or quintuplets) in rhythms, the individual note durations
can not be expressed as powers of two anymore. An adequate data type capable
of encoding all possible durations in music are fractions. In fractions, two integer
numbers (namely numerator and denominator) are stored separately. Fractions are
used as representations for all start times and durations in context layer models. All
common arithmetic operations (such as additions, subtractions, multiplications and

66

CHAPTER 3. CONTEXT LAYER COMPOSITION MODEL

divisions) of fractions in turn result in fractions which precisely represent each point
of time and each duration of context layer model events. MPS uses the Apache
Commons Mathematics Library for fraction-related operations1. Additional code
was implemented for fraction comparisons and modulo operations2. Refer to section
3.6, in particular Table 3.1, for examples demonstrating the time model.

3.5 Parallel Streams

To demonstrate a model combining multiple parts, a context layer model of the first
four measures of Ludwig van Beethoven’s Piano Sonata No. 14 in C# minor, Op.
27, No. 2 is presented in Figure 3.4. The model presented in Figure 3.4b contains
two streams, namely one for the arpeggios in the right hand and an individual stream
for the accompaniment in the left hand. Note that both streams contain the same
information on instrument, meter, tempo key, harmony, harmonic rhythm, scale and
loudness layers. However, the streams contain individual rhythm, degree and pitch
layers.

3.6 Stream Sequencers and Stream Events

When processing context layer models, mechanisms for navigating through the con-
tents of the model are required. So called stream sequencers were developed for this
purpose. The sequencers iteratively walk through context layer models while divid-
ing the available context information into logical units, so called stream events. The
duration of the stream events is determined by a configurable layer in the model,
which is set to the rhythm layer by default. By this means, streams can be processed
in logically grouped units. This is demonstrated in Figure 3.5, in which the context
layer model already presented in Figure 3.3b is segmented into individual stream
events. The resulting stream events are listed in Table 3.1.
Stream sequencers also keep track of event start times relative to the beginning of
the current measure. The time elapsed in the current measure is referred to as beat,
starting with 0 on the very first beat in each measure. The beat values for all stream
events are listed in the respective column in Table 3.1.
Stream sequencers were implemented for processing single streams3 and multiple

1
http://commons.apache.org/proper/commons-math/

2Source code in class eu.hfm.mps.util.math.FractionUtils (see Appendix A)
3Implementation in class eu.hfm.mps.core.streams.sequencer.StreamSequencer (see Ap-

pendix A)

67

http://commons.apache.org/proper/commons-math/

MPS Stream Model

Si deve suonare tutto questo pezzo delicatissimamente e senza sordini

Adagio sostenuto

3333

pp

sempre pp e senza sordini

�

�

�

�

�� ��

�

�

�

�

�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

��

� � �
�

� �
�

�
�
�	
�

�

� � �

� � �

�
�
�

� � �

� � �

� � � �

��
�

�
� ��	

�
�

�
�

� �
�

�
�

�� �
� �

� �

�
�

�

�

�
�

�
�

� �

�
�
�

� � � �

�
�
�

�
�

�

�
�

�

�

�

�
�

�
�

�
�

�

�
�

�

�

�
�
�

�
�

�
�

�

�
�
�

�� ��
�
	�

�
�

�
� �	

�
�

�

�

	

�
�

�

�

�

�

�
�

�
�

�

�

�

�
�
� �

�
� �

��

�
�

�

�

�

�
� �

�

�

�

�
�
�

�
� �

�
� �

�

�� �
��

�
�

� �
�

�
��

�

�

�

	

�
�

�

�

�

�
�

�

�

� �

�
�

�
�

� �

� �
�

��

� �

� �

�

�
�

�

�
�

�
�
�

�

�
�

� �
�

�
�

� �
�

�
�� �

� �
�� � �

� �
�

� �

� �

�
�

�

	

�
�

�

	

�
�

�

�� �
�

�
�
�

�
���� �	

��
����

�
�

	
� �

�
� ��
� �

�	
� �

�

� �
�

� �
��

� �� �� ��
�

�

�
�

�
��

���

�� ��
�

�

�
�

�
��

�
������

�
��

��
�

�

�
� ���

�

�

�
�

�

�

�

�
�

�
�

�

�

�
�

�

�

�
��

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�
�

�

��

�

Transcription © R.S.B 2012

12

16

20

8

4

Op.27 No.2

Piano Sonata No.14 in C-sharp minor "Quasi una fantasia"

"Moonlight Sonata"

Ludwig van Beethoven

Si deve suonare tutto questo pezzo delicatissimamente e senza sordini

Adagio sostenuto

3333

pp

sempre pp e senza sordini

�

�

�

�

�� ��

�

�

�

�

�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

��

� � �
�

� �
�

�
�
�	
�

�

� � �

� � �

�
�
�

� � �

� � �

� � � �

��
�

�
� ��	

�
�

�
�

� �
�

�
�

�� �
� �

� �

�
�

�

�

�
�

�
�

� �

�
�
�

� � � �

�
�
�

�
�

�

�
�

�

�

�

�
�

�
�

�
�

�

�
�

�

�

�
�
�

�
�

�
�

�

�
�
�

�� ��
�
	�

�
�

�
� �	

�
�

�

�

	

�
�

�

�

�

�

�
�

�
�

�

�

�

�
�
� �

�
� �

��

�
�

�

�

�

�
� �

�

�

�

�
�
�

�
� �

�
� �

�

�� �
��

�
�

� �
�

�
��

�

�

�

	

�
�

�

�

�

�
�

�

�

� �

�
�

�
�

� �

� �
�

��

� �

� �

�

�
�

�

�
�

�
�
�

�

�
�

� �
�

�
�

� �
�

�
�� �

� �
�� � �

� �
�

� �

� �

�
�

�

	

�
�

�

	

�
�

�

�� �
�

�
�
�

�
���� �	

��
����

�
�

	
� �

�
� ��
� �

�	
� �

�

� �
�

� �
��

� �� �� ��
�

�

�
�

�
��

���

�� ��
�

�

�
�

�
��

�
������

�
��

��
�

�

�
� ���

�

�

�
�

�

�

�

�
�

�
�

�

�

�
�

�

�

�
��

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�
�

�

��

�

Transcription © R.S.B 2012

12

16

20

8

4

Op.27 No.2

Piano Sonata No.14 in C-sharp minor "Quasi una fantasia"

"Moonlight Sonata"

Ludwig van Beethoven

Instrument (1) piano

Meter (4) 2/2 time 2/2 time 2/2 time 2/2 time

Tonal Center (1) C#m

Harmony (8) C#m C#m/B A D/F# G#7 C#m/G# G#sus4 G#7

Harmonic Rhythm (8) 1 1 2 2 4 4 4 4

Scale (1) minor

Rhythm (48) 12

Pitches (48) G#3 C# E G#3 C# E G#3 C# E G#3 C# E G#3 C# E G#3 C# E G#3 C# E G#3 C# E A3 C# E A3 C# E A3 D F# A3 D F# G#3 B#3 F# G#3 C# E G#3 C# D# F#3 B#3 D#

Loudness (1) loudness pp

St
re

am
 1

Instrument (1) piano

Meter (4) 2/2 time 2/2 time 2/2 time 2/2 time

Tonal Center (1) C#m

Harmony (8) C#m C#m/B A D/F# G#7 C#m/G# G#sus4 G#7

Harmonic Rhythm (8) 1 1 2 2 4 4 4 4

Scale (1) minor

Rhythm (6) 1 1 2 2 2 2

Pitches (6) [C#3, C#2] [B2, B1] [A2, A1] [F#2, F#1] [G#2, G#1] [G#2, G#1]

Loudness (1) loudness pp

St
re

am
 2

Time (Measures) 1 2 3 4

(a) Score representation. Edited by RSB and made available at imslp.org under the Creative Commons Attribution 3.0 Unported License.
Instrument (1) instrument piano

Meter (4) 2/2 time 2/2 time 2/2 time 2/2 time

Tempo (1) tempo 54

Key (1) C#m

Harmony (8) C#m C#m/B A D/F# G#7-D# C#m/G# G#sus4 G#7-G#3

Harmonic Rhythm (8) 1 1 2 2 4 4 4 4

Rhythm (48) 12

Scale (1) minor

Pitches (48) G#3 C#4 E4 G#3 C#4 E4 G#3 C#4 E4 G#3 C#4 E4 G#3 C#4 E4 G#3 C#4 E4 G#3 C#4 E4 G#3 C#4 E4 A3 C#4 E4 A3 C#4 E4 A3 D4 F#4 A3 D4 F#4 G#3 B#3 F#4 G#3 C#4 E4 G#3 C#4 D#4 F#3 B#3 D#4

Loudness (1) loudness pp

St
re

am
 1

Instrument (1) instrument piano

Meter (4) 2/2 time 2/2 time 2/2 time 2/2 time

Tempo (1) tempo 54

Key (1) C#m

Harmony (8) C#m C#m/B A D/F# G#7-D# C#m/G# G#sus4 G#7-G#3

Harmonic Rhythm (8) 1 1 2 2 4 4 4 4

Rhythm (6) 1 1 2 2 2 2

Scale (1) minor

Pitches (6) [C#3, C#2] [B2, B1] [A2, A1] [F#2, F#1] [G#2, G#1] [G#2, G#1]

Loudness (1) loudness pp

St
re

am
 2

Time (Measures) 1 2 3 4

Time (Absolute) 0 1 2 3

(b) Context layer model representation

Figure 3.4: Score and context layer model of Beethoven’s Piano Sonata No. 14 in C# minor, Op. 27, No. 2, Mv. I, mm. 1–4. Corresponding files
are available on the accompanying CD under Examples/Compositions/Beethoven/Op27No2_PianoSonataInCSharpMinor (see Appendix A).

68

https://imslp.org/wiki/Piano_Sonata_No.14,_Op.27_No.2_(Beethoven,_Ludwig_van)
https://creativecommons.org/licenses/by/3.0/

CHAPTER 3. CONTEXT LAYER COMPOSITION MODEL

parallel streams4. Processing context layer models by means of segmented stream
events is a key functionality of MPS, which is utilized for functionality such as model
and format transformations (see Chapter 5), context-based music search (introduced
in Chapter 6) and music analysis (see Chapter 7).

Table 3.1: Stream events produced by a stream sequencer segmentation shown in Figure
3.5. Note that some context layers which have constant values (namely instrument, meter,
tempo, key, harmonic rhythm, scale, loudness and score label) were omitted in this table
for more clarity.

#
Start
Time

Dura-
tion Beat

Har-
mony Rhythm Degree Pitch Lyrics

1 �1

4

1

4

3

4
ˇ “ 4 C5 Hey

2 0 1

4
0 F ˇ “ 2 A Jude

3 1

4

3

8

1

4
F > ?

4 5

8

1

8

5

8
F ˇ “(2 A don’t

5 6

8

1

8

6

8
F ˇ “(4 C5 make

6 7

8

1

8

7

8
F ˇ “(5 D5 it

7 1 1

4
0 C ˇ “ 1 G bad

8 5

4

1

2

1

4
C <

9 7

4

1

8

3

4
C ˇ “(1 G take

10 15

8

1

8

7

8
C ˇ “(2 A a

11 2 1

4
0 C7 ˇ “ 3 B[sad

12 9

4

1

4

1

4
C7 ˇ “ 7 F5 song

13 10

4

1

8

2

4
C7 ?

14 21

8

1

8

5

8
C7 ˇ “(7 F5 and

15 22

8

1

8

6

8
C7 ˇ “(6 E5 make

16 23

8

1

8

7

8
C7 ˇ “(4 C5 it

17 3 1

8
0 F ˇ “(5 D5 bet-

18 25

8

1

16

1

8
F ˇ “) 4 C5 te-

19 51

16

1

16

3

16
F ˇ “) 3 B[-

20 13

4

1

4

1

4
F ˇ “ 2 A r

21 14

4

1

2

2

4
F <

4Implementation in class eu.hfm.mps.core.streams.sequencer.MultiStreamSequencer (see
Appendix A)

69

Instrument (1) vocals

Meter (5) 4/4 time 4/4 time 4/4 time 4/4 time 4/4 time

Tempo (1) tempo 72

Key (1) F

Harmony (5) F C C7 F

Harmonic Rhythm (5) 1 1 1 1

Scale (1) major

Rhythm (21) 4 4 _4. 8 8 8 4 _2 8 8 4 4 _8 8 8 8 8 16 16 4 _2

Degrees (18) 4 2 2 4 5 1 1 2 3 7 7 6 4 5 4 3 2

Pitches (18) C5 A A C5 D5 G G A Bb F5 F5 E5 C5 D5 C5 Bb A

Loudness (1) loudness mf

Lyrics (18) Hey Jude don't make it bad take a sad song and make it bet- te- - r

Score Label (1) Verse

St
re

am
 1

Time (Measures) 1 2 3 4 5

Time (Absolute) -1 / 4 0 1 2 3

St
re

am
 E

ve
nt

 1

St
re

am
 E

ve
nt

 2

St
re

am
 E

ve
nt

 3

St
re

am
 E

ve
nt

 4

St
re

am
 E

ve
nt

 5

St
re

am
 E

ve
nt

 6

St
re

am
 E

ve
nt

 7

St
re

am
 E

ve
nt

 8

St
re

am
 E

ve
nt

 9

St
re

am
 E

ve
nt

 1
0

St
re

am
 E

ve
nt

 11

St
re

am
 E

ve
nt

 1
2

St
re

am
 E

ve
nt

 1
3

St
re

am
 E

ve
nt

 1
4

St
re

am
 E

ve
nt

 1
5

St
re

am
 E

ve
nt

 1
6

St
re

am
 E

ve
nt

 1
7

 S
tre

am
 E

ve
nt

 1
8

 S
tre

am
 E

ve
nt

 1
9

St
re

am
 E

ve
nt

 2
0

St
re

am
 E

ve
nt

 2
1

Figure 3.5: Segmentation of the context layer model of Hey Jude by the Beatles, mm. 1–4, vocal part, into individual stream events. Refer to
Table 3.1 for a detailed listing of individual stream events.

70

CHAPTER 3. CONTEXT LAYER COMPOSITION MODEL

3.7 Key Benefits and Versatility of the Model

A key benefit of the model is the clear separation of musical aspects and the time-
dependent visualization of how these aspects are combined in the course of musical
compositions. In a sense, context layer models provide fine-grained views of musical
structures and the interrelations between these, all of which are relevant when com-
posing, interpreting, performing, perceiving and analyzing music. In musical scores,
information is presented in a concise, performance-oriented way, which sometimes
requires combining information specified in different places, which at times are a
long way from each other. This limitation is overcome in context layer stream
models since all available information at certain points of time is easily visible by
scanning the model visualization vertically. Focusing on individual musical as-
pects is facilitated by the possibility to read relevant layers horizontally. While
scores are preferable for performing musicians, this thesis demonstrates advantages
of the proposed models for musical analysis, format transformations and algorithmic
composition.
Furthermore, certain information can not be represented explicitly in traditional
scores, such as information about utilized scales, how pitches can be interpreted in
terms of scale degrees and specifications of harmonic rhythm. New musical styles
and forms, such as electroacoustic music, pose even more difficult challenges with
regard to music notation (Burnson et al. 2010).
Streams can either share common information or contain stream-specific informa-
tion. The model is not limited to the representation of tonal music. For example,
for multi-tonal compositions concurrent streams could contain different harmonic
and tonal contexts at the same point of time. For compositions which do not rely
on tonality, all context layers relating to tonality can be removed. Arbitrary new
layers can be added if additional musical dimensions are required. Consequently, the
proposed model is suitable for the representation of a number of musical concepts
and ideas, which can not in all cases be made visible in musical scores. Note that
the model is by design not intrinsically tied to the representation of western music,
although the examples in this thesis are limited to this type of music since other
systems would go beyond the scope of this dissertation. However, the layer-based
approach supports the representation of arbitrary musical systems and dimensions.

71

CHAPTER 3. CONTEXT LAYER COMPOSITION MODEL

3.8 Summary

Context layer models capture various dimensions of music individually and represent
these in terms of separate context layers. The approach to describe individual
musical aspects separately is a key aspect of the models proposed in this dissertation.
This explicitly reveals information which is not easily visible (or even not visible at
all) in musical scores. Moreover, the model provides a generic approach to represent
music which can not be notated in traditional scores. Context layer models can be
processed using stream sequencers, which provide stream segmentations in the form
of stream events. In the following chapter, the model is further enhanced and a
more concise representation is proposed.

72

Chapter 4

Context Tree Model and
Composition Language

Our language and our song are like
an old tree, continually putting out
new leaves.

— Ralph Vaughan Williams

The layer-based model proposed in the previous chapter is further refined and ex-
tended in this chapter. Context tree models are concise, redundancy-optimized rep-
resentations of context layer models, which additionally allow the specification of
musical modification processes and algorithmic structures. The model is presented
in conjunction with a corresponding description language which enables the textual
representation of the models. It facilitates the specification of musical compositions
in terms of comprehensible, computer- and human-readable text files.

4.1 Motivation

Musical scores and context layer models (introduced in Chapter 3) usually contain
redundant information. Musical information occurring repeatedly throughout the
course of a composition can be identified in two variations:
Horizontal Redundancy: Individual context layers potentially contain large amounts
of redundant information. These redundancies can easily be identified when analyz-
ing the progression of a single context layer horizontally.
Vertical Redundancy: In context layer models containing more than one stream,
individual streams may share information in certain context layers, which can be
discovered by analyzing the context layer model vertically.

73

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

The main motivation to design an alternative representation of context layer mod-
els is to eliminate the necessity of specifying context information more than once.
Further motivation is to represent inherent hierarchical structures used in musical
compositions.

4.2 Overview

The composition model proposed in this work is capable of representing musical
pieces by means of a tree-based structure containing musical context information.
Besides musical contexts, the model comprises so called context modifiers, context
generators and control structures. All aforementioned elements are explained in the
following sections.
The model was developed in conjunction with a domain-specific composition lan-
guage. It serves as a medium between the computer and human composers. To
humans, model representations in the memory of computers are ultimately confus-
ing conglomerates of numbers. However, humans are very good at comprehending
languages. Therefore, a language is a suitable interface between computers and
humans. With the help of the developed language, composition models can be
transformed to simple textual representations. In this form they become compre-
hensible and also persistable in text files. The process is also reversible: Human
composers can take advantage of the language to compose music by writing simple
text files representing musical composition models. These techniques and processes
are illustrated in the following sections.

4.3 Introductory Example

As a first example, a context tree model of Ludwig van Beethoven’s world-famous
Symphony No. 5 in C Minor, Op. 67 opening motif is presented along with the
corresponding score in Figure 4.1.
Each context tree model defines a root node labeled composition. It contains a tree
of context elements. In the model shown in Figure 4.1a, a metric context (a 2

4
time

signature) is defined. Below this, the key of the composition (namely C minor) is
defined by means of a key context. On the next tree level, a rhythm is specified
representing the famous rhythm of the motif, namely ? ˇ “(ˇ “(ˇ “(˘ “. The syntax used to
describe this rhythm is part of the composition language, which is also introduced
in this chapter. Refer to section 4.5.1 for more details.
The pitches to be played are specified in terms of zero-based degrees on the minor
scale, meaning that the number 0 represents the tonic C, 1 the note D, 2 the note

74

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

2/4 time

key Cm

rhythm _8 8 8 8 2

scale minor

pitches 4 4 4 2 pitches 3 3 3 1

rhythmic extension 2

(a) Context tree model representation

!
"42 # # !$ # !Piano # "% # %&&& #

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.1: Score and context tree model of Beethoven’s Symphony No. 5 in C Minor,
Op. 67, Mv. I, mm. 1–4, violin part. Corresponding files are available on the accom-
panying CD under Examples/Compositions/Beethoven/Op67_Symphony5/Motif (see Ap-
pendix A).

75

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

E[and so on. Note that the context tree diverges below the scale node into two
separate branches. This is interpreted as follows: First, all contexts between the
composition and the scale node are combined with the left branch (namely the
node pitches 4 4 4 2), and sequentially combined with the right branch (namely
the node pitches 3 3 3 1 and the rhythmic extension). Note that both com-
bined context sets contain the same rhythm, but different pitches. This is a pattern
which is very frequently used in musical compositions: the same musical context (in
this case a rhythm) is combined with a set of other musical contexts of another type
(in this case pitches).
The left branch effectively represents the first two measures of the composition. In
this case, the pitches evaluate three times to G and once to E[. In the right branch,
which represents the rest of the motif, the pitches evaluate three times to F and once
to D. The D, however, is rhythmically different from the E[in the second measure, as
its duration is two half notes instead of only one. This is only a minor modification
compared to the original rhythm. In the proposed model, it is not required to define
a new rhythm. Instead, only the modification of the current rhythm can be specified,
which is done with a so called context modifier named rhythmic extension, which
doubles the duration of the last half note.
The context model in Figure 4.1a can also be represented in terms of a simple text
file in the corresponding domain-specific language which was developed in the scope
of this dissertation. Compare the syntactical representation in Listing 4.1 with the
graphical model in Figure 4.1a.
⌥ ⌅

1 composition
2 {
3 time 2/4, key Cm
4 {
5 rhythm _8 8 8 8 2
6 {
7 scale minor
8 {
9 pitches 4 4 4 2

10 pitches 3 3 3 1
11 {
12 rhythmicExtension 2
13 }
14 }
15 }
16 }
17 }⌃ ⇧

Listing 4.1: Syntactical representation of the context tree model of Beethoven’s 5th
Symphony motif shown in Figure 4.1a

76

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

4.4 Key Concepts

The preceding example demonstrates a few key aspects of the model:

• Compositions can be expressed as combinations of musical aspects or contexts
in various constellations.

• Contexts can be represented in the form of a tree. When combining different
tree branches sequentially, the tree can be interpreted as a musical composi-
tion.

• The tree structure is suitable for representing music in a compact form avoiding
redundant information. In the example, the rhythm is used twice but must be
specified only once.

• If a musical structure (such as a rhythm) is modified in the course of a com-
position, the modification process can be specified rather than defining a new
rhythm instance.

These concepts, among other mechanisms, are further elaborated in the following
sections.

4.4.1 Hierarchical Structures

Musical compositions are usually to some extent organized and perceived in hierar-
chically arranged units.

Regardless of how planned or unplanned a compositional form is, musical
structures tend to be hierarchical. (Biles 2007a, p. 30)

Compositions can generally have multiple hierarchical levels of organization.

Music is not a mere linear sequence of notes. Our minds perceive pieces
of music on a level far higher than that. We chunk notes into phrases,
phrases into melodies, melodies into movements, and movements into
full pieces. (Hofstadter 1979, p. 525)

Hierarchical structures for music representation have been explored by Lerdahl and
Jackendoff in their generative theory of tonal music (Lerdahl and Jackendoff 1983)
and tonal pitch space theory (Lerdahl 2001). Another related contribution is the
generative syntax model by Rohrmeier (Rohrmeier 2011). These works suggest that
listeners unconsciously build hierarchically organized structures when experiencing

77

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

music, which can be represented in the form of tree structures. However, “to date,
no neurophysiological investigation has tested whether individuals perceive music
cognitively according to tree structures” (Arbib 2013, p. 144).
The hierarchical nature of context tree models is used for multiple purposes:

• Utilizing hierarchical structures is useful for logical and graphical grouping
and for improving the clarity and readability of musical context tree models.
The number of hierarchy levels in MPS context models is not limited, which
allows modelling musical context trees with arbitrary complexity.

• The hierarchy level of contexts in the tree models is also used to express the
scope of the corresponding contexts. Generally, the higher a context is located
in the tree, the more global its impact on the musical composition is.

• Furthermore, hierarchical relations between individual contexts can be
modeled. For example, pitches can be put in a local harmonic context such as
a chord or harmony, which in turn can be related to a local and/or global key.

4.4.2 Inheritance

A very effective way of avoiding redundant information is to harness a technique
commonly used in object-oriented software development called inheritance. It in-
volves defining hierarchical dependencies between object types in order to utilize
already existing properties and/or functionality from another object type. To illus-
trate, consider the diagram in Figure 4.2.

A

B C

D

Figure 4.2: Simple class hierarchy

In this example, a type (also denoted as class) named B inherits from a class named
A, which means B will automatically have the same functionality as A and will
usually define individual additional functionality. The same holds true for type C,

78

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

which also inherits from A, but adds different functionality than B. Class D in turn
inherits the functionality from C, which in sum yields the functionality of A, C and
individual additional functionality defined by D.
In MPS, the principle of inheritance is applied to musical context tree models. This
is illustrated using a musical example. Consider the score of the beginning of Queen’s
Bohemian Rhapsody shown in Figure 4.3.

Bohemian Rhapsody

fan

!fan

!fan

!
fan

! !
sy?

!
sy?

!
ta

!
ta!
ta

!
tathis

!this

"

!
this

!
this!

!
just

!
just!
just!
just

!

!
!

!

!
sy?

!
sy?

"
45

45

45

45
this

!this

!this

!
this

!

Is!
Is!
Is the

!the

!the

!
the

!

44##
8

$ %
44##$ %
44##$ % !

Is

!

%$
8

44 %
%
%
%

Is

!Is
!Is
!

!
Is

real

!real

!real

!

!
real

life?

!life?

!life?

!
life?

!

!
li

li

!
li

!
li

&!

'

'

ty
!
ty

!
ty
!
ty
!

&
(

&

re

!re

!
re

!
from

!
from!
from

!
from a

!
a

!a
!
a

!

!
re

&

&

'

'
Caught

!Caught

!Caught
!

Caught

!%
%
%

%
a

!a
!a
!
a

!

land

!land

!land

!
land

!##$

##$
3

45
45
45
45

in

!in
!in
!
in

!

(

$
8

##

$
8

##
(

cape
44 !

cape
44 !

es

!44
cape

!44
cape

!

!

)
)

slide

!slide

!slide
!

slide

!

!
es
!

no

!
no

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4.3: Queen, Bohemian Rhapsody, mm. 1–4. Corresponding files are available on the
accompanying CD under Examples/Compositions/Queen/Bohemian Rhapsody (see Ap-
pendix A).

The score in Figure 4.3 contains redundant information. For example, the parts are
arranged in a homorhythmic manner, i.e. the rhythms of all four parts are exactly
identical except for the end of the third measure. Also, the lyrics for all parts are
exactly identical. In traditional scores, the composer or arranger has no other choice
but to write the same rhythms and syllables all over again. In MPS context tree
models, however, the rhythm and the lyrics have to be specified only once and can
be reused using various techniques. One of these techniques is inheritance, which
is demonstrated by means of the context tree model in Figure 4.4 representing the
first two measures of the piece.
The inheritance hierarchy is made visible by arrows and by the positions of the
context nodes. Arrows are interpreted as ‘all inherited contexts are passed on to

79

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

4/4 time

instrument vocals

key Bb

rhythm _8 8 8 8 4 4

harmony Gm7 rhythmic insertion (offset 2, rhythm 8 16 5 / 16, mode overwrite)

lyrics 'Is this the real life?'

parallelization

pitches 2 pitches 0 pitches -1 pitches -3

harmony C7

lyrics 'Is this just fan-ta-sy?'

parallelization

pitches 6b 6b 6b 6b 4 4 pitches 4 4 4 4 3 2 pitches 2 2 3 2 1 0 pitches 0 0 1 0 -1b -1b

Figure 4.4: Context tree model of Queen’s Bohemian Rhapsody, mm. 1–2. Common con-
texts for both measures are a 4

4
time signature, vocal instrumentation, the key B[major,

and the rhythm ? ˇ “==̌“==̌ “== ˇ “ ˇ “. The harmony context in the first measure (which is modeled
in the left subtree) is defined as G minor with an added seventh. Furthermore, the lyrics
“Is this the real life?” and individual pitches for the four voices are defined. The rhythm
of the second measure is derived from the globally defined rhythm by means of a rhythmic
insertion. Below, the harmonic context (C7), the lyrics and individual pitches are specified
for the second measure.

the node in direction of the arrow’. Inheriting nodes will normally be drawn on
the next hierarchy level, which implies a lower position in the graph visualization.
This way, the instrument (vocals), the key (B[major), the rhythm, the context
harmony (Gm7) and the lyrics (“Is this the real life?”) are combined and passed on
to the left parallelization node. It has four child nodes, which produce the four
individual vocal parts of the first measure. They have different pitches, but have
all the previously enumerated contexts in common. Using inheritance, all common
contexts have to be specified only once, which is a major advantage of context tree
models.
The same technique is used in the second measure, which inherits common instru-
ment, key, base rhythm, context harmony and lyrics contexts. Note that further
optimization methods are available, which are explained in the following sections.

80

composition

4/4 time

instrument vocals

key Bb

rhythm _8 8 8 8 4 4 rhythm 8 8 8 8 8 4.

harmony Gm7 rhythmic insertion (offset 2, rhythm 8 16 5 / 16, mode overwrite) 5/4 time

lyrics 'Is this the real life?'

parallelization

pitches 2 pitches 0 pitches -1 pitches -3

harmony C7

lyrics 'Is this just fan-ta-sy?'

parallelization

pitches 6b 6b 6b 6b 4 4 pitches 4 4 4 4 3 2 pitches 2 2 3 2 1 0 pitches 0 0 1 0 -1b -1b

harmony F7

lyrics 'Caught in a land-slide' lyrics 'no es-'

parallelization

pitches 2 2 2 3 2 pitches 0 0 0 1 0 pitches -1b pitches -3

parallelization

reference reference reference reference

quarterRest unisono

harmony Bb

lyrics 'cape from re-a-li-ty'

parallelization

pitches 0 0 0 0 -3 -3 pitches -3 -3 -2 -3 -4 -5 pitches -5 -5 -4 -5 -6 -7 pitches -7 -7 -6 -7 -8 -10

rhythm _4 rhythm 8 8

pitches -7 -7

Figure 4.5: Context tree model of Queen’s Bohemian Rhapsody, mm. 1–4. The two leftmost subtrees are identical to the context tree model in
Figure 4.4. The 5

4
time signature overwrites the globally defined 4

4
time signature at the top of the tree temporarily, namely in the third measure.

In the fourth measure, which corresponds to the rightmost subtree, the global 4

4
time becomes operative again. Compare with the score in Figure

4.3.

81

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

4.4.3 Polymorphism

Another model concept inspired by object-oriented programming is polymorphism,
which allows overriding (and also extending) particular parts of inherited function-
ality. In context tree models, this concept can be used to overwrite contextual infor-
mation. To elaborate, another context tree model of Bohemian Rhapsody is shown
in Figure 4.5, this time containing context information of the first four measures of
the piece.
The time signature change in the third measure (see score in Figure 4.3) is modeled
using a polymorphic construction. In the model in Figure 4.5, the 5

4
time signature

context is positioned on a lower hierarchy level than the 4

4
time context near the

root of the tree. The metric context 5

4
effectively overrides the 4

4
context temporarily

(namely for one measure). After the subtree of the 5

4
measure is processed, the

main 4

4
time signature becomes operative again. This technique can be applied

to any musical context. For instance, temporary changes regarding meter, tempo,
instruments, rhythms, pitches and harmonic contexts can be modeled.
Note that this representation has additional value compared to a purely sequential
representation. In the context tree model, it is directly visible that the 4

4
meter

is of higher importance in the composition than the 5

4
meter. In fact, it becomes

apparent that the 5

4
meter is only used in terms of a temporary ‘excursus’ from the

standard meter of the piece and is used in a subsidiary manner.

4.4.4 Auto Expansion

When combining contexts defining musical sequences (e.g. rhythms, pitches or lyric
syllables), these sequences do not necessarily need to have the same length. If
the number of available rhythm notes, pitches and syllables does not match, the
system will automatically apply a so called auto expansion. The consequence is that
shorter sequences are automatically repeated until the longest sequence is consumed
completely.
An example model and the corresponding score of Beethoven’s Ode to Joy chorus
from the Symphony No. 9 is shown in Figure 4.6. Syntactically, this model can be
represented in a language form as demonstrated in Listing 4.2.
In Figure 4.6a, musical sequences of different lengths are combined; in particular, the
leftmost subtree combines the rhythm 4. (i.e. a dotted quarter note) with a pitch on
the third scale degree (zero-based, i.e. 2) and the two lyric syllables Freu-de. While
the rhythm and the pitch sequence only contain one element, the lyric sequence
contains two syllables. The system automatically wraps and repeats the rhythm
and the pitches until both syllables are processed. In sum, this results in two dotted

82

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

instrument vocals

6/8 time

key D

rhythm 4. rhythm 5 / 8 8 4 _8 _4.

pitches (startOctave 5) 2 pitches (startOctave 5) 3 4 4 3 2 1 0 0 1 2

lyrics 'Freu-de' lyrics 'schö-ner Göt-ter-fun-ken, Toch-ter aus E-'

pitches (startOctave 5) 2 1 1

lyrics 'ly-si-um'

(a) Context tree model representation

si
! "#

um

$#
E

% #
ly

% ###
ner

% %%
schö

#%
de

#
ter

% %
fun

#%
Freu
86

&&' #
Toch

Vocals

%
Göt

#
ter

% %
aus

##% %
ken,

#

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.6: Score and context tree model of Beethoven’s Symphony No. 9, Mv. IV,
mm. 543–550, soprano part. Corresponding files are available on the accompanying CD
under Examples/Compositions/Beethoven/Op125_Symphony9 (see Appendix A).

quarter notes, both with the same pitch, but with different syllables.
Auto expansion was also used in the previous Bohemian Rhapsody example in Figure
4.4, in which the rhythm _8 8 8 8 4 4 is combined with the lyrics “Is this the real
life?” and multiple pitch contexts for individual parts, namely pitches 2, pitches
0, pitches -1 and pitches -3. The rhythm contains six rhythmic notes, the first
of which is a rest, leaving five assignable notes for syllables and pitches. The lyrics
contain exactly five matching syllables. The pitch contexts, however, contain only
one pitch each. Therefore, the pitches are repeated until the rhythm and the lyrics
are consumed completely. Using auto expansion, redundant musical sequences can
be represented in an effective way, providing yet another useful compression method
for context tree models. An automatic algorithm for context tree model compression
is proposed in Chapter 5.7.

83

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
⌥ ⌅

1 composition
2 {
3 instrument vocals , time 6/8, key D
4 {
5 rhythm 4.
6 {
7 pitches(startOctave 5) 2
8 {
9 lyrics "Freu -de"

10 }
11 pitches(startOctave 5) 3 4 4 3 2 1 0 0 1 2
12 {
13 lyrics "schö-ner Göt-ter -fun -ken , Toch -ter aus E-"
14 }
15 }
16 rhythm 5/8 8 4 _8 _4.
17 {
18 pitches(startOctave 5) 2 1 1
19 {
20 lyrics "ly -si-um"
21 }
22 }
23 }
24 }⌃ ⇧

Listing 4.2: Syntactical representation of the context tree model of Beethoven’s Ode to Joy
chorus from Symphony No. 9.

4.4.5 Modularization using Fragments

�����������

���������� �����������

����� ������ ��

����� ���������������

������ �� �� � ������ �� �� ������ � ������ �� �� � ������ � � �� �� �

������� � � � ������� � � � ������� � � ������� � � ������� � ������� � � � ������� � � � ������� � � � � �

(a) Context tree model representation containing two redundant subtrees originating from
the rhythms 8. 16 4

Symphony No. 9 in E minor, Op. 95, 2nd Mvmt. Theme

Antonin Dvořák

! ! ! " ! ! " ! #! ! " !! ! ! " # ! " !EnglishHorn !$ %%%%% & " ! ! !! ! "

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.7: Score and context tree model of the English horn theme from Antonin Dvorak’s
Symphony No. 9 in E minor (“From the New World”), Op. 95, B. 178, Mv. II. Correspond-
ing files are available on the accompanying CD under Examples/Compositions/Dvorak/
Op95_SymphonyNo9_Mv2 (see Appendix A).

84

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Another technique to avoid redundant information in context tree models is mod-
ularization. To this means, arbitrary subtrees can be extracted into so called frag-
ments. These are named subtrees which can be referenced from other places in the
model. If subtrees occur multiple times in a model, they only have to be defined
once in a fragment in order to be referenced at any place they are required.
As an example, consider the score and model of the English horn theme of Antonin
Dvorak’s Symphony No. 9 in E minor, “From the New World”, Op. 95, B. 178 in Fig-
ure 4.7. This model can be further optimized, as it contains redundant information.
Compare measures 1 and 3 in the score in Figure 4.7b, which are exactly identical.
The corresponding subtrees, i.e. the subtrees originating at the rhythms 8. 16 4,
can be extracted to a fragment and referenced twice, as shown in Figure 4.8.

�����������

���������� �����������

����� ������ ��

����� ���������������

��������� ������ �� �� ������ � ��������� ������ � � �� �� �

���������� ������� � � ������� � � ������� � ������� � � � � �

������ �� �� �

������� � � � ������� � � �

Figure 4.8: Redundancy-optimized context tree model of the English horn theme from
Antonin Dvorak’s Symphony No. 9 in E minor (“From the New World”), Op. 95, B. 178,
Mv. II

85

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

4.5 Contexts

The basic unit of information in the model are musical contexts. All available con-
texts are introduced and explained in greater detail in this section. For each context,
an equivalent textual representation in the corresponding composition language is
presented.

4.5.1 Rhythms

Rhythm is one of the most central aspects in music. While at first glance its pur-
pose is only to define “durational proportions” of sound events (Cooper and Meyer
1960, p. 1), the impact and the presence of rhythmic proportions inherently exist in
multiple dimensions of music. Not only are rhythms present defining the duration
of sound events or notes, but also for other musical aspects: the harmonic rhythm,
for example, concerns the duration and length of contextual harmonies, and can be
different from the rhythm of the notes being played.
Sequences of rhythmic notes (i.e. durations of notes and rests) are specified using a
simple syntax which was developed as part of MC2L. Refer to Table 4.1 for detailed
explanations of basic note and rest duration syntax variants.

Table 4.1: Note and rest duration syntax

Syntax Example Description

n (integer num-
ber)

2 4 8 16 !
"

! !
#

$

Music engraving by LilyPond 2.18.2—www.lilypond.org

Integer literals are interpreted as reciprocal dura-
tion, e.g. 4 represents a quarter note, 8 an eighth
note etc.

_ (prefix) _2 _4 _8 _16
!" #$

Music engraving by LilyPond 2.18.2—www.lilypond.org

Prefix to indicate that the following duration is
to be interpreted as a rest duration.

! (suffix) 2!
! !

Music engraving by LilyPond 2.18.2—www.lilypond.org

Integer literals followed by an exclamation mark
are not interpreted as reciprocal duration but as
literal duration, e.g. 2! specifies a duration of
two whole notes.

Continued on next page

86

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.1 – Continued from previous page

Syntax Example Description

. (suffix) 8. 16 8.. 32
! ! "" !" !

Music engraving by LilyPond 2.18.2—www.lilypond.org

Dots are used as suffixes to extend the preceding
note or rest duration with a factor of 1.5. Multi-
ple dots can be used in a row. The total duration
of a note with original duration d followed by n

dots is computed as follows (Wright 2009, p. 20):

dn = d

✓
1 +

1

2
+

1

22
+ . . .+

1

2n

◆

= d
nX

i=0

✓
1

2

◆i

= d

✓
2 �

✓
1

2

◆n◆
= d

✓
2 � 1

2n

◆
(4.1)

n/m (fraction with
integer numerator
and denominator)

5/4
!"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Fractional note or rest duration, normally used if
the duration can not be expressed as a canonical
duration using simple fractions of two and dots.

⇠ (suffix) 1⇠4
!"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Suffix used to indicate that the current note is
rhythmically tied to the following note.

(n/m:
<durations>)
(Tuplet)

(3/2: 8 8 8)
!!

3

!

Music engraving by LilyPond 2.18.2—www.lilypond.org

Specifies a tuplet in which n notes are played
in the original duration of m notes. The ad-
jacent example produces an eighth triplet. To
compute the resulting durations, the original du-
rations have to be multiplied with the fraction m

n .
For example, in the case of the triplet, the note
durations are multiplied with 2

3
, yielding dura-

tions of 1

8
· 2

3
= 1

12
for each of the eighth triplet

notes.

Table 4.2 demonstrates how rhythms of well-known compositions are expressed using
the composition language syntax.

87

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.2: Rhythm syntax examples

Syntax and Resulting Rhythm Description

_8 8 8 8 2
! "!# !

Music engraving by LilyPond 2.18.2—www.lilypond.org

Ludwig van Beethoven, Symphony No. 5 in
C Minor, Op. 67, Motif Rhythm

4. 8 8 8 _4
!
"
! ! #! $

Music engraving by LilyPond 2.18.2—www.lilypond.org

George Frideric Handel, Hallelujah Chorus
from Messiah, HWV 56, Motif Rhythm

2 4 4 4. 16 16 4 _4
! "#!!$!!!

Music engraving by LilyPond 2.18.2—www.lilypond.org

Wolfgang Amadeus Mozart, Piano Sonata
No. 16 in C major, K. 545, Opening Theme
Rhythm

8 8 8 _8 8 8 _8 8 _8 8 8 _8 ! "!!!!"! "! "!
#

Music engraving by LilyPond 2.18.2—www.lilypond.org

Steve Reich, Clapping Music, Rhythmic Mo-
tif

8 16 16⇠ 2
! ! " #!

Music engraving by LilyPond 2.18.2—www.lilypond.org

The Beatles, Yesterday, Opening Vocal
Rhythm

4 _8 (3/2: 16 16 16) 4

_8 (3/2: 16 16 16) 4
!" !

3 3

!! "! ! !!!

Music engraving by LilyPond 2.18.2—www.lilypond.org

Wolfgang Amadeus Mozart, Symphony No.
41 in C major, K. 551, Opening Theme
Rhythm

Anacruses

Some musical phrases do not start directly on a metrically strong beat, but are
preceded by one or more notes, referred to as anacrusis, also known as pickup or
upbeat (Randel 2003, p. 42). Often this happens at the very beginning of a piece,
yet also phrases in the middle of compositions can be initiated using pickup beats.
To indicate anacruses in MPS, the pickup beats are simply enclosed in parentheses.
For example, Listing 4.3 specifies a rhythm with an eighth note pickup beat.⌥ ⌅

1 rhythm (8) 8 8 8 16 16 4. _8⌃ ⇧
Listing 4.3: Rhythm starting with an anacrusis

Consider the context model of the first measures of Vivaldi’s Concerto No. 1 in E
major, Op. 8, RV 269, which is shown in Figure 4.9a along with the resulting score
in Figure 4.9b. Also compare with the syntactical representation in Listing 4.4.
The example demonstrates the use of anacruses both at the beginning and in the
course of a piece. Note that existing rhythmic information is overwritten when using
pickup beats. Specifically, the model in Figure 4.9a defines an eighth rest at the end

88

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

�����������

��� �

������ ��� � � � �� �� �� �� ������ ��� ��� � � � �� �� �� ��

������� � � � � � � �� ������� �� �� � � � � � ��

(a) Context tree model representation

La Primavera Mv. 1: Allegro
Antonio Vivaldi

!" " " #" " # "" " ""
Piano

"$ %%%% & '
" "" "

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation with highlighted anacruses at the very
beginning and before the second full measure

Figure 4.9: Score and context tree model of the the first measures of Vivaldi’s Concerto
No. 1 in E major, Op. 8, RV 269. Corresponding files are available on the accompany-
ing CD under Examples/Compositions/Vivaldi/RV269_Concerto_No1_in_E_Major (see
Appendix A).

of the first rhythm, which is overwritten by the two sixteenth pickup notes of the
second rhythm.⌥ ⌅

1 composition
2 {
3 key E
4 {
5 rhythm (8) 8 8 8 16 16 4. _8
6 {
7 pitches 7 9 9 9 8 7 11
8 }
9

10 rhythm (16 16) 8 8 8 16 16 4. _8
11 {
12 pitches 11 10 9 9 9 8 7 11
13 }
14 }
15 }⌃ ⇧

Listing 4.4: Syntactical representation of the context model shown in Figure 4.9a

4.5.2 Meter

Rhythms are usually embedded in a metric context defining the importance of indi-
vidual beats in a measure. Its time signature indicates how measures are divided.

89

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

For example, a 2

4
time signature indicates the duration of a measure is divided into

two quarter note pulses. Notes occurring on these two points of time in the measure
are generally considered accented, whereas notes occurring between these two beats
are considered weak. More specifically, each pulse in the measure has an individual
importance. Clarence Barlow developed formulas for computing the importance of
individual beats depending on the metric context (Barlow 2012, pp. 44ff.).

composition

instrument snare

rhythm 4. 8 4

3/4 time 6/8 time

(a) Context tree model representation

!

"
!#

86
!!

"
!#

43$!Snare

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.10: Score and context tree model of a rhythm in two different metric contexts

⌥ ⌅
1 composition
2 {
3 instrument snare
4 {
5 rhythm 4. 8 4
6 {
7 time 3/4
8 time 6/8
9 }

10 }
11 }⌃ ⇧

Listing 4.5: Syntactical representation of the model shown in Figure 4.10a

Depending on the metric context, the very same rhythm can have different musical
meanings. This is illustrated in the model shown in Figure 4.10. An equivalent
syntactical representation is given in Listing 4.5. The model puts the rhythm ˇ “‰ ˇ “(ˇ “
into two different metric contexts. In the first measure with a 3

4
time signature, the

dotted quarter note and the final quarter note are both accented, whereas in the

90

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

second measure with a 6

8
time signature the dotted quarter note and the eighth note

are accented. This example demonstrates that the same rhythm can have different
musical meanings depending on the metric context.

4.5.3 Tempo

Tempo is an individual context dimension which can be changed independently from
time signatures. The tempo is specified in Beats per Minute (BPM). For example:⌥ ⌅

1 tempo 100⌃ ⇧
By default, the BPM specification defines the temporal distance of quarter notes.
It is also possible to define other note durations to which the BPM specification
relates. To specify the tempo for eighth notes, for example, the following syntax is
used:⌥ ⌅

1 tempo 80 noteDuration 8⌃ ⇧
It is also possible to define gradual tempo changes:⌥ ⌅

1 tempo 80 -> 110 noteDuration 8⌃ ⇧
4.5.4 Instruments

A common task for composers and arrangers is the instrumentation or orchestration
of pieces, which involves the assignment of instruments or instrument combinations
for individual parts of the piece.
The model shown in Figure 4.11 represents an excerpt from Boléro by Maurice
Ravel, in which the melody is sequentially played by the flute and the clarinet. The
equivalent syntactical representation is shown in Listing 4.6. The code in Listing
4.6 contains a fragment named melody, in which an abbreviatory syntax is used to
express child node relations. If a context node contains only one child node, the
child node can be specified after a preceding comma. In this case, no curly braces
are required, which contributes to improved readability of the code.
For a version of this model in which the melody is played simultaneously, refer to
Figure 4.30 in Chapter 4.8.1.

91

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

3/4 time

instrument flute instrument clarinet

reference

melody

reference

rhythm 4. 16 16 16 16 16 16 rhythm 8 16 16 4. 16 16 rhythm 16 16 16 16 9 / 16 rhythm 16 16 16 16 16 16 16 4

pitches 7 6 7 8 7 6 5 pitches 7 7 5 7 6 7 pitches 5 4 2 3 4 pitches 3 2 1 2 3 4 5 4

(a) Context tree model representation
Bolero

!!! ! !!!!
"

! !! !!43 !# !! $$! !!

Clarinet in B%
Flute

"
!

43
!

&&
!

#
'! !
"

! !

!!

$

!

(

'

$

!
(

! ! !!! !! !!!!!$!!!&&#
#

5 $
!
(

! !$!!!
(
!
$

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation. Note that the clarinet is notated in B[.

Figure 4.11: Score and context tree model of an excerpt from Boléro by Maurice Ravel,
in which the melody is played sequentially. Corresponding audio and MIDI files are avail-
able on the accompanying CD under Examples/Compositions/Ravel/Bolero (see Ap-
pendix A).

92

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
⌥ ⌅

1 composition
2 {
3 time 3/4
4 {
5 instrument flute
6 {
7 fragmentRef melody
8 }
9 instrument clarinet

10 {
11 fragmentRef melody
12 }
13 }
14 }
15 fragment melody
16 {
17 rhythm 4. 16 16 16 16 16 16, pitches 7 6 7 8 7 6 5
18 rhythm 8 16 16 4. 16 16, pitches 7 7 5 7 6 7
19 rhythm 16 16 16 16 9/16, pitches 5 4 2 3 4
20 rhythm 16 16 16 16 16 16 16 4, pitches 3 2 1 2 3 4 5 4
21 }⌃ ⇧

Listing 4.6: Syntactical representation of the Boléro excerpt shown in Figure 4.11a

Instrument Definitions

MPS provides a number of built-in instrument definitions. Refer to the documen-
tation1 for a complete list of available instruments. If additional instruments are
required, users are able to define custom instruments by providing instrument defi-
nitions. Consider the code in Listing 4.7 for an instrument definition of an acoustic
bass guitar.
⌥ ⌅

1 instrumentDef acousticBass
2 {
3 pitchRange [23..67]
4 maxSimultaneousNotes 4
5 scoreLabel "Bass"
6 lilyPondInstrumentName "acoustic bass"
7 defaultClef bass
8 defaultOctave 2
9 }⌃ ⇧

Listing 4.7: Syntax for an instrument definition for an acoustic bass guitar

The instrumentDef keyword is followed by an instrument identifier, which is used to
reference the instrument definition in instrument contexts. Enclosed in curly braces,
optional instrument parameters follow. Refer to Table 4.3 for a list of available
parameters.

1The MPS documentation is available on the accompanying CD (see Appendix A) and online
at http://www.musicprocessing.net/doc/.

93

http://www.musicprocessing.net/doc/

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.3: Instrument definition parameters

Parameter Description

type Either percussion for percussion instruments or
synth for synthesizers used for electronic / electroa-
coustic music. Omit this parameter to create an in-
strument of default type which is playable in dif-
ferent pitches.

pitchRange Specifies the compass of the instrument in terms of
MIDI notes in the syntax [lowest note..highest

note].
maxSimultaneousNotes Specifies the maximum number of notes which can

be played simultaneously.
scoreLabel Name of the instrument which is displayed at the

beginning of staves in scores.
lilyPondInstrumentName Instrument name used for assigning a MIDI instru-

ment when exporting LilyPond scores2.
defaultClef Default clef to use in scores. Currently supported

clef names are: treble, alto, tenor and bass.
defaultOctave Default MIDI octave to use if none is specified in

composition models.

4.5.5 Pitches

Pitch is an elementary dimension of music. Pitches are perceived by humans in terms
of periodic oscillations of air pressure. The unit for the pitch of a single oscillating
sound wave is measured in Hertz (abbreviated Hz), which is defined as cycles per
second, or s�1 (H. E. White and D. H. White 2014, p. 11). Physically, musical
instruments produce individual timbres which are characterized by certain ratios
of partial frequencies, which are expressible as multiples of a so called fundamental
frequency. Musicians refer only to the fundamental frequency when specifying the
pitch of a note. Moreover, musicians have established a domain-specific terminology
for frequencies. While a physicist might refer to the fundamental frequency of the
concert pitch A as 440 Hz, musicians refer to this frequency using a pitch name and
an octave specification, such as A above middle C. Middle C is located approximately
in the middle of a standard piano keyboard.
Another system for referring to pitches is specified by the MIDI protocol (see Chapter
2.1.1). Furthermore, SPN defines numbers for each octave, 4 being defined as the
middle octave (Müller 2015, p. 4). Refer to Table 4.4 for an overview of MIDI note
numbers and corresponding octaves.
MPS supports multiple types of pitch specifications. One possibility is to specify
absolute pitches and octave numbers such as A[5. MIDI note numbers were specif-

94

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.4: MIDI note numbers and octave numbers according to scientific pitch notation

MIDI Note Numbers Octave Number Octave Name

0-11 -1 Double Contra
12-23 0 Sub Contra
24-35 1 Contra
36-47 2 Great
48-59 3 Small
60-71 4 One-line
72-83 5 Two-line
84-95 6 Three-line
96-107 7 Four-line
108-119 8 Five-line
120-127 9 Six-line

ically not chosen as pitch unit, since enharmonic differentiations are not possible.
For instance, the pitch names G] and A[correspond to the same key on a piano
(assuming the same octave number is specified), but have different musical mean-
ings relating to the harmonic context (see Chapter 4.5.8 for more details). For this
reason, MPS uses harmonically significant pitch names. Alternatively, pitches may
be given in terms of degrees on a scale, which is elaborated in section 4.5.6.
The first two measures of W. A. Mozart’s Piano Sonata No. 16 in C major, K. 545,
also known as Sonata Facile are used as an example for pitch specifications using
pitch names and octave numbers. Consider the representations shown in Figure
4.12 along with the correspondent syntactical representation in Listing 4.8. Various
syntax alternatives for pitch specifications are listed in Table 4.5.
⌥ ⌅

1 composition
2 {
3 rhythm 2 4 4 4. 16 16 4 _4
4 {
5 pitches (startOctave 5) C E G B_4 C D C
6 }
7 }⌃ ⇧

Listing 4.8: Syntactical representation of the model shown in Figure 4.12a.

Additional parameters may be used when specifying pitch sequences, which are
explained in Table 4.6. If these parameters are used, they have to be syntactically
enclosed in parentheses before pitches or scale degrees are specified, as demonstrated
in Listing 4.8 with the startOctave parameter.

95

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

rhythm 2 4 4 4. 16 16 4 _4

pitches (startOctave 5) C E G B4 C D C

(a) Context tree model representation. Pitches are specified using absolute note names
and the octave number.

Sonata Facile Theme

W.A. Mozart! "#!!$% &Piano
!! !

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.12: Score and context tree model of W. A. Mozart’s Piano Sonata No. 16 in
C major, K. 545, mm. 1–2, right hand part. Corresponding files are available on the ac-
companying CD under Examples/Compositions/Mozart/KV545_SonataFacile (see Ap-
pendix A).

Table 4.5: Pitch syntax

Syntax Description

<note name> Used for specifying pitches explicitly, e.g. D, C# or Eb.
<integer number> Used for pitch specifications based on scale degrees. Refer

to section 4.5.6 for more details.
(suffix) Raises the previously specified pitch or scale degree by one

semitone.
b (suffix) Lowers the previously specified pitch or scale degree by one

semitone.
[<pitches>] Square brackets are used to specify chords. For example, a

D major chord can be written as [D F# A].
@ (prefix) Indicates the usage of an expression to dynamically com-

pute a pitch or scale degree. For example, the expression
@getRootNote() evaluates to the root note of the current
context harmony. Refer to section 4.9 for more details.

96

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.6: Pitch sequence parameters

Parameter Description

startOctave Specifies the octave to use if no octaves are defined explic-
itly.

findNearestOctave If set to true, the system will change the octave auto-
matically if it implies a smaller semitone distance to the
previous note. Example: in the pitch sequence A C the sys-
tem would start in the default octave yielding A4. With
findNearestOctave enabled, the next pitch would be C5
because it has a smaller distance to A4 than C4.

relative to Specifies which harmonic context is to be used to deter-
mine the context scale and its tonic. Possible values are
key and harmony. Refer to sections 4.5.6 and 4.5.8 for
more details.

4.5.6 Scales

Frequently pitches in compositions are not randomly chosen, but selected from a
specific set of pitches forming a scale. By referring to individual scale degrees,
corresponding pitches are derived. Consider the model in Figure 4.13; the syntactical
representation is shown in Listing 4.9.
Using scale degrees instead of absolute note names has several advantages: first,
scale degrees are syntactically easier and shorter to write. Second, thinking in terms
of scale degrees is often more adequate regarding music theory and reflects the way
most composers and musicians think about pitches. Third, scale degrees can easily
be projected onto another scales. In other words, the same degrees can be used in
another scale context, which allows interesting musical variations. This is also the
case for the Vltava model presented in Figure 4.13a, in which the theme is presented
in two scale contexts, namely a minor and a major version.
Note that the scale contexts used in Figure 4.13a are optional, because a default
scale context is derived from the current harmonic context automatically. In the
left branch, the current key context is E minor which results in a matching minor
scale context by default. In the right branch, the harmonic context is E major and
therefore the default scale is major accordingly. Refer to section 4.5.8 for more
details on harmonic contexts.

97

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

�����������

��� ����

����� ������ ��

���������� ������

����� ����� ����� �����

���������

�����

����� ������ �

���������

������ ��� ������ � � ������ � � �� ������ �� �� ������ ��� � � ������ �� � � � � � � �� � � � �� ���

������� � ������� � � ������� � �� ������� �� ������� �� ������� �� ������� �� �� �� � �� � � � � � �

(a) Context tree model representation. The theme, in which the pitches are expressed in
terms of scale degrees, is referenced twice in a major and a minor scale and key context.

 !
"!! !"!!86

#$ "!! "!
! %!"!"

%!% %!%! !!"! ####%!"
!! !" !"! &'!

" !! !" !
! !" ! % !

" ! ' & %!" ! % !!"
! !"

! !####9

$!! ! % ! %%%! !
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.13: Score and context tree model of Bedřich Smetana’s Moldau theme from Vltava,
JB 1:112/2. The theme is referenced in a minor and a major scale context. Correspond-
ing files are available on the accompanying CD under Examples/Compositions/Smetana/
Moldau (see Appendix A).

98

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
⌥ ⌅

1 composition
2 {
3 time 6/8, key Em, instrument violin
4 {
5 scale minor
6 {
7 fragmentRef theme
8 }
9 scale major , key E

10 {
11 fragmentRef theme
12 }
13 }
14 }
15

16 fragment theme
17 {
18 rhythm (8)
19 {
20 pitches 4
21 }
22 rhythm 4 8
23 {
24 pitches 7 8
25 pitches 9 10
26 }
27 rhythm 4 8 4.
28 {
29 pitches 11
30 }
31 rhythm 4. 4.
32 {
33 pitches 12
34 }
35 rhythm 4. ~ 4 8
36 {
37 pitches 11
38 }
39 rhythm 4. 4 8 4 8 4 8 4. 4 8 4 _8 _4.
40 {
41 pitches 10 10 10 9 10 9 9 8 8 8 7
42 }
43 }⌃ ⇧

Listing 4.9: Syntactical representation of the model shown in Figure 4.13a

Scale Definitions

MPS provides a number of built-in scales, which are listed in Table 4.7. If additional
scales are required, users are able to define custom scales using scale definitions in
the header section of composition files. An example definition for the dorian scale
is shown in Listing 4.10.

Table 4.7: List of scales provided by the Music Processing Suite library

Name Identifier Degrees in Semitones

Major major 0 2 4 5 7 9 11

Ionian ionian 0 2 4 5 7 9 11

Continued on next page

99

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.7 – Continued from previous page

Name Identifier Degrees in Semitones

Minor minor 0 2 3 5 7 8 10

Aeolian aeolian 0 2 3 5 7 8 10

Blues blues 0 3 5 6 7 10

Chromatic chromatic 0 1 2 3 4 5 6 7 8 9 10 11

Diminished diminished 0 1 3 4 6 7 9 10

Dorian dorian 0 2 3 5 7 9 10

Harmonic Major harmonicMajor 0 2 4 5 7 8 11

Harmonic Minor harmonicMinor 0 2 3 5 7 8 11

Locrian locrian 0 1 3 5 6 8 10

Lydian lydian 0 2 4 6 7 9 11

Major Pentatonic majorPentatonic 0 2 4 7 9

Minor Pentatonic minorPentatonic 0 3 5 7 10

Melodic Major melodicMajor 0 2 4 5 7 8 10

Melodic Minor melodicMinor 0 2 3 5 7 9 11

Mixolydian mixolydian 0 2 4 5 7 9 10

Phrygian phrygian 0 1 3 5 7 8 10

Whole-tone whole 0 2 4 6 8 10

⌥ ⌅
1 scaleDef dorian
2 {
3 degrees 0 2 3 5 7 9 10
4 }⌃ ⇧

Listing 4.10: Syntax of a scale definition for the dorian scale

4.5.7 Loudness

To account for the loudness dimension of music, MPS supports both static loudness
contexts and gradual loudness contexts. The latter are used to model crescendo
and decrescendo. Static loudness specifications are syntactically described with the
loudness keyword followed by a single loudness instruction as shown in Listing 4.11.
Refer to Table 4.8 for a enumeration of possible loudness specifications.⌥ ⌅

1 loudness ff⌃ ⇧
Listing 4.11: Syntactical representation of a static loudness instruction

100

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.8: Loudness specification syntax

Syntax Description

pppp pianissississimo
ppp pianississimo
pp pianissimo
p piano
mp mezzo-piano
mf mezzo-forte
f forte
ff fortissimo
fff fortississimo
ffff fortissississimo
current Refers to the last loudness level specified.

This can be used for specifying gradual dy-
namics (crescendo and decrescendo).

Gradual loudness specifications contain two loudness instructions delimited by the
token -> as illustrated in Listing 4.12.⌥ ⌅

1 loudness p -> f⌃ ⇧
Listing 4.12: Syntactical representation of a gradual loudness instruction

For gradual loudness instructions, the special loudness instruction current may be
used, which refers to the last loudness level specified in the composition. This is
demonstrated in the following example in Listing 4.13, which contains the loud-
ness context loudness current -> f. It results in a crescendo visible in the sixth
measure of the score in Figure 4.14b.
In Figure 4.14, a model of W. A. Mozart’s Flute and Harp Concerto in C major,
K. 299/297c is presented containing both static and gradual dynamic instructions
along with the resulting score. The equivalent language representation is given in
Listing 4.13.

4.5.8 Harmonic Contexts

Harmonic contexts are especially important in western tonal music, in which pitches
in compositions are usually organized in reference to specific keys (Randel 2003,
p. 898). Matching scales and functions of specific chords can be derived depending on
the key context. MPS supports explicit specifications of harmonic contexts including
hierarchically arranged keys and contextual harmonies.

101

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

�����������

���������� ����

�������� � ������ � �������� �

������ � ������ �

������ �� � � � � �

������� �� �� � � � ��

������� ��

�������� � �������� � �������� � �������� � �������� � �������� ������� �� �

������� � � � ������� � ������� � �� � ������� � ������� � �� � ������� �� �� �� ��

������ � � � ��

������� ��

(a) Context tree model representation

Concerto for Flute, Harp, and Orchestra in C major, K. 299/297c!"
#$$

f
%$$&$ $$$$&$

!$$ $
p
$

f
$$

!
'(f
$

Oboe

$$$ $
f
$ $$)$
p

$)
p
$ $

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.14: Score and context tree model of the opening oboe theme from W. A. Mozart’s
Flute and Harp Concerto in C major, K. 299/297c, containing static and gradual loudness
contexts. Corresponding files are available on the accompanying CD under Examples/
Compositions/Mozart/KV299_297c_ConcertoInCMajor (see Appendix A).

⌥ ⌅
1 composition
2 {
3 instrument oboe
4 {
5 loudness f
6 {
7 repeat 2
8 {
9 rhythm 4. 8 8 8 8 8, pitches 14 11 9 7 9 11

10 }
11 rhythm 4, pitches 14
12 }
13 rhythm 4
14 {
15 loudness p, pitches 7 6 7
16 loudness f, pitches 8
17 loudness p, pitches 8 7# 8
18 loudness f, pitches 9
19 loudness p, pitches 9 8# 9
20 loudness current -> f, pitches 10 11 12 13
21 }
22 loudness f, rhythm 7/4 _4, pitches 14
23 }
24 }⌃ ⇧

Listing 4.13: Syntactical representation of the model shown in Figure 4.14a

102

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Keys

Keys serve as musical “landmarks” in tonal compositions. While simple pieces might
only define one key, more complex compositions might incorporate temporary key
changes (modulations) or even key changes for whole sections or parts of the piece,
for instance compositions geared to the sonata form (Randel 2003, pp. 800, 898).
Modulations and key changes can be modeled elegantly in MPS using hierarchical
arrangements (as discussed in section 4.4.1) and polymorphism (see section 4.4.3).
In this way, the scope of the specified keys can be controlled using an arbitrary
number of logical levels.

composition

key Gm

exposition development recapitulation

key Gm key Bb key F#m key ... key ...

Figure 4.15: Schematic context tree model of W. A. Mozart’s Symphony No. 40 in G
minor, K. 550, Mv. I demonstrating hierarchically arranged global and local keys

An example is provided in Figure 4.15, which contains a schematic hierarchical ar-
rangement of keys used in the first movement of Mozart’s Symphony No. 40 in G
minor, K. 550. The global key of this movement is G minor. Themes are presented
in the exposition in G minor and its relative major key B[major. In the devel-
opment, Mozart modulates through a number of keys starting with F] minor. The
recapitulation concludes in the global key G minor.
Syntactically, keys are defined by referring to the root note name (for instance G or
D#) and the optional suffix m indicating a minor harmony (e.g. Am or B[m).

Harmonic Progressions

While keys provide a global harmonic context in tonal compositions, harmonic pro-
gressions provide local harmonic transitions. These can be expressed implicitly by

103

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

specifying simultaneously sounding notes or in an explicit way, for example in the
style of lead sheets (as shown in Figure 3.3a, for instance).

composition

key Am

rhythm 1

pitches (relative to harmony) [0, 2, 4]

harmony Am harmony G harmony F harmony E

(a) Context tree model representation

!"""
E# ""$ "Am """GPiano """

F

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.16: Score and context tree model demonstrating a harmonic progression in the
context of a global key. Corresponding files are available on the accompanying CD under
Examples/Model/HarmonicProgression (see Appendix A).

The context tree model in Figure 4.16 defines a harmonic progression consisting of
four local harmonies. These are hierarchically embedded in the global key context
A minor. The corresponding language representation is shown in Listing 4.14.
The complexity of harmonies is not limited to major and minor chords. MPS sup-
ports additional notes and harmony specifications as specified in Table 4.9. Note
that these additions can be combined, for instance A7sus4 defines a harmony with
the notes A, D, E and G. Refer to Chapter 4.6.3 for more examples demonstrating
harmony additions.
Another feature of MPS is the support for Roman numeral harmony notation. The
numerals represent harmonies based on specific scale degrees on the underlying scale,
which is derived from the current key context. For example, in the key of C major,
the C major chord can be represented by I, F major by IV and G major by V.

104

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

⌥ ⌅
1 composition
2 {
3 key Am
4 {
5 rhythm 1
6 {
7 pitches (relative to harmony) [0 2 4]
8 {
9 harmony Am

10 harmony G
11 harmony F
12 harmony E
13 }
14 }
15 }
16 }⌃ ⇧

Listing 4.14: Syntactical representation of the context model in Figure 4.16a demonstrating
a harmonic progression in the context of a global key.

Table 4.9: Harmony additions

Syntax Description
<integer number> Additional harmony note relative to the root note, expressed

in terms of scale degrees. For example, F7 translates to a F
major chord with added minor seventh.

or b prefix Optional prefix for additional harmony notes to indicate a
semitone correction upwards or downwards, respectively.

maj7 Adds a major seventh relative to the root note.
m7 Indicates a minor chord with a minor seventh.
sus2 Suspended second chord in which a perfect second is added

and the third is omitted.
sus4 Suspended second chord containing a perfect fourth but no

third.
° Diminished chord
+ Augmented chord
power Power chord containing only the root and the fifth. Fre-

quently used in rock and metal genres (McDonald 2000).

105

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Generally, upper case Roman numbers are used to represent major chords and lower
case letters are used for minor chords. For example, D minor in the key of C major
can be expressed with ii. The harmonic additions from Table 4.9 can be used as
well. For instance, a dominant seventh chord can be written as V7.
In certain cases it is convenient to specify a harmonic sequence as a whole. In MPS,
this is possible using harmonicProgression contexts in combination with a har-
monicRhythm instruction defining the duration of each harmony in the progression.
This is demonstrated in the context tree model depicted in Figure 4.17. It results in
an equivalent score as the previous example (see Figure 4.16b). Listing 4.15 shows
the corresponding language representation.

composition

key Am

chord progression Am G F E

harmonic rhythm 1 1 1 1

rhythm 1 1 1 1

pitches (relative to harmony) [0, 2, 4]

Figure 4.17: Context tree model demonstrating the definition of a harmonic progression
and a corresponding harmonic rhythm

106

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
⌥ ⌅

1 composition
2 {
3 key Am
4 {
5 harmonicProgression Am G F E, harmonicRhythm 1 1 1 1
6 {
7 rhythm 1 1 1 1
8 {
9 pitches(relative to harmony) [0 2 4]

10 }
11 }
12 }
13 }⌃ ⇧

Listing 4.15: Syntactical representation of the context model in Figure 4.17 demonstrating
the definition of a harmonic progression and a corresponding harmonic rhythm.

4.5.9 Lyrics

In vocal music, sung notes are usually associated with syllables, which is considered
as a separate context dimension in the MPS model. Syllables are specified using a
simple syntax. To distribute syllables of a word onto multiple notes, hyphens (-) may
be used. Syllable assignments for specific notes can be skipped using underscores
(_). As an example, the first measures of the song Hey Jude by the Beatles is used.
Refer to Listing 4.16 and the corresponding representations in Figure 4.18.
⌥ ⌅

1 composition
2 {
3 key F
4 {
5 rhythm (4) 2 _8 8 8 8 2 _2
6 {
7 pitches 4 2 2 4 5 1
8 {
9 lyrics "Hey Jude don ’t make it bad"

10 }
11 }
12

13 rhythm (8 8) 4 4. 8 8 8 8 16 16 2 _4
14 {
15 pitches 1 2 3 7 7 6 4 5 4 3 2
16 {
17 lyrics "take a sad song and make it bet -te--r"
18 }
19 }
20 }
21 }⌃ ⇧

Listing 4.16: Language representation of the first measures of Hey Jude by the Beatles
demonstrating the specification of lyrics

107

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

�����������

����� ������ �

������ ��� � �� � � � � �� ������ �� �� � �� � � � � �� �� � ��

������� � � � � � �

������ ���� ���� ����� ���� �� ����

������� � � � � � � � � � � �

������ ����� � ��� ���� ��� ���� �� ����������

(a) Context tree model representation

Hey Jude

The Beatles

! "
r

#!
bet

!
tebad

$!
don't

!
make

!
it

" # !
take

!
a

Piano !% & '
Hey

"
Jude

!
song

(!
and

!
make

!
it

!
sad

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.18: Score and context tree model of the first measures of Hey Jude by the Beatles
demonstrating the specification of lyrics. Corresponding files are available on the ac-
companying CD under Examples/Compositions/Beatles/Hey Jude/Leadsheet (see Ap-
pendix A).

4.5.10 Custom Contexts

MPS offers a feature to create arbitrary custom contexts. An example is shown
in Figure 4.19. The context tree model contains three sections in which individual
moods are described by means of custom context nodes. Refer to Listing 4.17 for the
corresponding language representation. Custom contexts are syntactically defined
by the keyword customContext, followed by a context identifier (in this case mood)
and a string literal representing an instance of the context.
Custom contexts are represented as individual layers in context layer models (see
Chapter 3). Scores generated from models containing custom contexts will contain
textual annotations such as Mood: vivid at the top of the relevant staves.

108

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

section1 section2 section3

mood vivid mood melancholic mood maestoso

Figure 4.19: Context tree model introducing a new custom context type to describe moods
of individual sections

⌥ ⌅
1 composition
2 {
3 fragment section1
4 {
5 customContext mood "vivid"
6 }
7

8 fragment section2
9 {

10 customContext mood "melancholic"
11 }
12

13 fragment section3
14 {
15 customContext mood "maestoso"
16 }
17

18 }⌃ ⇧
Listing 4.17: Syntactical representation of the context tree model in Figure 4.19 which
defines custom contexts to describe the mood of individual sections

4.6 Context Modifiers

Frequently, already introduced musical material is modified in the course of com-
positions. In these cases, no fundamentally new ideas are introduced, but existing
ones are shaped. To account for this, so called context modifiers allow to adjust
already existing musical material. Their functionality is explained in the following
subsections.

4.6.1 Rhythmic Modifiers

Rhythmic context modifiers have the purpose of manipulating existing rhythmic
contexts in a musical composition.

109

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Augmentations and Diminutions

Rhythmic augmentation involves prolonging the note lengths of a given rhythm by
multiplying the original lengths with a constant factor, typically 2. However, other
scale factors are possible. A rhythmic diminution is considered as the opposite of a
rhythmic augmentation, i.e. the note durations are not extended but shortened by
a constant factor.
The following example demonstrates a model of a subject being transformed using
diminution and inversion. It can be found in J. S. Bach’s The Art of Fugue, BWV
1080, Contrapunctus VII. The language representation is shown in Listing 4.18, the
corresponding model is visualized in Figure 4.20 and the resulting score is depicted
in Figure 4.21.
⌥ ⌅

1 composition
2 {
3 key Dm
4 {
5 parallel
6 {
7 fragmentRef soprano
8 fragmentRef tenor
9 }

10 }
11 }
12

13 fragment soprano
14 {
15 rhythm _1
16 inversion 11
17 {
18 fragmentRef subject
19 }
20 }
21

22 fragment tenor
23 {
24 diminution , scale melodicMinor
25 {
26 fragmentRef subject
27 }
28 }
29

30 fragment subject
31 {
32 rhythm 2 4. 8 4. 8 2 2 4. 8 5/8 8 8 8 4 _4 _2
33 {
34 pitches 0 4 3 2 1 0 -1 0 1 2 3 2 1 0
35 }
36 }⌃ ⇧

Listing 4.18: Language representation of an excerpt from J. S. Bach’s The Art of Fugue,
BWV 1080, Contrapunctus VII, in which diminution and inversion is applied

110

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

�����������

����� ������ ��

���������������

��������� ���������

������� �����

������ �� ��������� ��

���������

�������

����������

����� ������������

���������

������ � �� � �� � � � �� � � � � � � � � �� ��

������� � � � � � � �� � � � � � � �

Figure 4.20: Context tree model of an excerpt from J. S. Bach’s The Art of Fugue,
BWV 1080, Contrapunctus VII, in which diminution and inversion is applied

111

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
Contrapunctus 7

! "
#$#

###
%

#$

#

#

#$ ###

&

##$# #' (

$

#

#

#

#

!)*+, #

*+, %

Piano

Piano -
#

#
%
&-#

$# #
%

&

"

&-

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4.21: Score of an excerpt from of J. S. Bach’s The Art of Fugue, BWV 1080,
Contrapunctus VII, resulting from the context model in Figure 4.20. Corresponding files
can be found on the accompanying CD under Examples/Compositions/Bach/BWV1080_
TheArtOfFugue/Contrapunctus7_Diminution_and_Inversion (see Appendix A).

Rhythmic Extensions

Rhythmic extensions are used to extend the duration of the last note or rest in
a rhythm. This modifier was already demonstrated in the context tree model for
Beethoven’s Symphony No. 5 in C Minor, Op. 67 in section 4.3. Syntactically,
rhythmic extensions are specified using the keyword rhythmicExtension, followed
by a note duration as explained in section 4.5.1. If the note duration is positive, the
rhythm is extended. If the note duration is negative, the rhythm is shortened by
the absolute value of the given negative duration.

Rhythmic Adjustments

Rhythmic adjustment modifiers allow to modify rhythms at the beginning and at
the end. The modifications are specified by means of two durations for the beginning
and the end of the rhythm, respectively. It is possible to specify both or only one
of the parameters. Refer to Table 4.10 for detailed parameter descriptions.

Table 4.10: Rhythmic adjustment modifier parameters

Parameter Description
startDelta Specifies how the rhythm is modified at the beginning. If

startDelta is positive, the rhythm will start from the given time,
effectively shortening the rhythm by startDelta. If startDelta

is negative, the first note or rest of the rhythm will be extended.
endDelta Specifies a duration for the adjustment of the end of the rhythm. If

endDelta is positive, the rhythm is extended; if endDelta is nega-
tive, the rhythm is shortened. The behaviour is identical with the
rhythmicExtension modifier introduced in the previous section.

Rhythmic Insertions

This modifier inserts a rhythm into the contextually present rhythm. This can either
happen in an additive manner, whereupon existing notes and rests are shifted to the

112

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.11: Rhythmic insertion modifier parameters

Parameter Description
offset Specifies after which duration the insertion should be applied to the

rhythm.
rhythm Defines the rhythm to be inserted in the syntax introduced in section

4.5.1.
mode Either insert to shift existing notes and rests after the insertion to

the right or overwrite to overwrite existing elements.

Table 4.12: Rhythmic displacement modifier parameters

Parameter Description

offset Defines the rhythm translation offset. For positive durations, the
rhythm is shifted to the right, for negative durations to the left.

mode In discard mode, notes moved over the rhythm’s boundary are
removed. In wrap mode, the notes are appended to the other end
of the rhythm.

right, or in a destructive manner, whereupon existing elements are overwritten.
A rhythmic insertion was already demonstrated in Queen’s Bohemian Rhapsody.
Refer to the score in Figure 4.3 and compare the rhythms in the first and the second
measure, which both start off with three eighth notes, but continue differently. In
the model shown in Figure 4.4 this is expressed using a rhythmic insertion. It is
used in the right subtree, which represents the specifics of the second measure. The
rhythm 8 16 5/16 is inserted into the basic rhythm _8 8 8 8 4 4 at offset 2, i.e.
after the duration of a half note, effectively replacing the two quarter notes with
the specified rhythm. Table 4.11 contains explanations for all parameters of this
modifier.

Rhythmic Displacements

Rhythmic displacement modifiers are used to translate existing rhythms by moving
them to the right or to the left in itself. The modifier takes a note duration offset
and a mode specification as parameters, which is explained in detail in Table 4.12.
As an example, consider Steve Reich’s composition Clapping Music, in which a
rhythmic motif is repeatedly performed by two players. For the second player,
the rhythm is iteratively shifted and wrapped, resulting in twelve rhythmic varia-
tions. See Figure 4.22 showing a context tree model containing a repeatedly applied
rhythmic displacement modifier and the Figure 4.23 for the corresponding score.
The syntactic representation of the model can be found in Listing 4.19.

113

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

12/8 time

tempo 168

instrument handClaps

parallelization

repeat 13 for n in 0 to -12 step -1

reference

motiv

reference

rhythmic displacement
offset: n / 8, mode: wrap

repeat 4

rhythm 8 8 8 _8 8 8 _8 8 _8 8 8 _8

Figure 4.22: Context tree model of Steve Reich’s Clapping Music, in which iterative rhyth-
mic displacements are utilized

114

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
⌥ ⌅

1 composition
2 {
3 time 12/8, tempo 168
4 {
5 instrument handClaps
6 {
7 parallel
8 {
9 repeat 13

10 {
11 fragmentRef motiv
12 }
13 for n in 0 to -12 step -1
14 {
15 fragmentRef motiv
16 {
17 rhythmicDisplacement mode wrap offset n/8
18 }
19 }
20 }
21 }
22 }
23 }
24

25 fragment motiv
26 {
27 repeat 4
28 {
29 rhythm 8 8 8 _8 8 8 _8 8 _8 8 8 _8
30 }
31 }⌃ ⇧

Listing 4.19: Language representation of Steve Reich’s Clapping Music model in Figure
4.22, in which iterative rhythmic displacements are utilized

4.6.2 Pitch Modifiers

Pitch modifiers are used for manipulating contexts in the musical pitch dimension.

Transpositions

Transpositions have the effect of modifying contextually available pitches. The mod-
ifier can be applied in three modes in order to support semitone-based transpositions,
scale-based transpositions and octave translations. All parameters are explained in
Table 4.13. Refer to Chapter 4.8.5 for an example demonstrating various transposi-
tion techniques.

Inversions

Inversions were already demonstrated in section 4.6.1 in conjunction with a diminu-
tion using J. S. Bach’s The Art of Fugue, BWV 1080, Contrapunctus VII as an
example.

115

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

!!

!!!! !!

!! !! !! !!

!! !!

"
#
$

$$

$

$

"

$

#
$

""

"

$

#
$

$

#
$

$

#
$$

$$

$

"

"

"%

$

"
#

$

$

$ "

"$

#
$

$

"

$

$

$

$

$

"

"
! = 168

$

$

"

"

$

$

$ $

$
812

&

' #

#

$

$

812 "

"

%

"

"

$

$

$

$

"
#

"

$

#
$"

$

$

$

$

"

!!

!!

!! !!

!! !!!! !!

!! !!!!

!!

"

"

$

$

"

$

#
$

$

$

"

#
$

$

"

$

#
$

$

#
$

"
#

"

$

#
$

$

$

"
#

$

$

"

$

#
$

$

"

"

#
$

$

"

"

$

$

$

$

"

"

$

#

$

$

$

"

"

$

#
$

"

%

%
4&

'

$

$

$

"

$

$

$

$

"

"

$

$

$

$

$

"

"

$

"$

$

!! !! !!

!!!! !!!! !!

!!

!!

!! !!

"

" "

$ "

$

$

$

$

"

"
#

$

$$

$

"

#
$

$

$

$ "

"

$

#
$

$

#

$

"
#
$$

$

$

$

" $

"
#

"

$

#
$

"

$

$

$

"

"

$

"

$

$

"
#

#

$

"%

%
7&

'
$

$

$

"

$

"

#
$

$

"

$

$

$

$ "

$

#
$

$

$

"

$

$

#

!! !!

!!

!!!!

!! !!!!

$

$

$

"

#
"

$

#
$

$

$

$

"

$

$

"

"

$

#
$

$

#

#

$

$

$

"

$

$

"

"

$

$

$

$

"$

$

#

#
"

%

%
10&

'

$

"$

"

$

$

$

$ "

"$

"

"

$

!! !!

!! !!

!!

!!

!!

!!

$

$

$

$

"

$

#

"

$ $

"

$

$

"

"

$
#

#

$

$

"

"

$

$ $

$

$

"

$

$

$

$

$

$

$

"

"

%

%
12&

'
"

"

#
$

$

"

#

"

$

#
$

"

$

"

$

$

#

$

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4.23: Score of Steve Reich’s Clapping Music. The score results from the context
tree model in Figure 4.22, in which iterative rhythmic displacements are utilized. Cor-
responding files are available on the accompanying CD under Examples/Compositions/
Reich/Clapping Music (see Appendix A).

Table 4.13: Transposition modifier parameters

Parameter Description

mode Defines the unit of the interval expression. Three modes are avail-
able: absolute for semitone-based transpositions, inScale to per-
form transpositions of scale degrees and octaves for octave trans-
lations. If the parameter is not specified, the default absolute will
be used.

interval Expression which must be interpretable as an integer number. The
unit of this number is defined by the mode parameter.

116

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Parallel Intervals

Parallel interval modifiers add simultaneously audible pitches in a specific interval to
existing pitches. The intervals can be specified in terms of semitones, scale degrees
or octaves. As an example, a model of the guitar introduction of Deep Purple’s
Smoke on the Water is shown in Figure 4.24, the syntactical representation of which
can be seen in Listing 4.20.
⌥ ⌅

1 composition
2 {
3 time 4/4, tempo 110
4 {
5 instrument electricGuitarOverdriven
6 {
7 key Gm
8 {
9 scale blues

10 {
11 parallelInterval mode absolute -5
12 {
13 fragmentRef fragment1
14

15 rhythm _8 8 _8 8 _8 8 4 _4
16 {
17 pitches 0 1 3 2
18 }
19

20 fragmentRef fragment1
21

22 rhythm _8 8 _8 4. _2
23 {
24 pitches 1 0
25 }
26 }
27 }
28 }
29 }
30 }
31 }
32

33 fragment fragment1
34 {
35 rhythm 8 _8 8 _8 4
36 {
37 pitches 0 1 2
38 }
39 }⌃ ⇧

Listing 4.20: Language representation of the the guitar introduction of Deep Purple’s
Smoke on the Water, in which a parallel interval modifier is used.

The main melodic motif is notated in terms of degrees on the G minor blues scale,
which consists of the minor pentatonic scale with an added “blue note” between the
third and fourth scale degree, as shown in Figure 4.25.
The upper notes of the famous Smoke on the Water riff can be specified in terms
of scale degrees on the G minor blues scale. When analyzing the distance between
the notes, it becomes apparent that the lower notes have a constant distance to the
upper notes, namely five semitones or a perfect fourth. It is therefore convenient to

117

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

�����������

��� ����

����� ���

���������� ������������������������

��� ��

����� �����

�������� �������� ���� �������� ��

��������� ������ �� � �� � �� � � �� ��������� ������ �� � �� �� ��

���������������� � � � � ������� � �

������ � �� � �� �

������� � � �

(a) Context tree model representation

Smoke On The Water

Deep Purple

!
""
!

"" $$ %
""
!

""
##

"" ! ""
##
! & ""'' (""

##
Guitar

"") ** +
! = 110

##

&
!

"" !
""
!!

"
#
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation. The black notes were specified using the G minor blues scale (see
Figure 4.25). The red notes were automatically generated using a parallel interval modifier
which was configured with a constant interval of a descending perfect fourth.

Figure 4.24: Score and context tree model of the guitar introduction of Deep Purple’s
Smoke on the Water, in which a parallel interval modifier is used. Corresponding files
are available on the accompanying CD under Examples/Compositions/Deep Purple/
Smoke On The Water (see Appendix A).

118

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
 !"!! !##$!Piano

!#!

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 4.25: G minor blues scale

Table 4.14: Parallel interval modifier parameters

Parameter Description

mode Specifies the interval unit. Available modes are absolute (in semi-
tones), inScale (for scale-specific parallel intervals) and octaves.

interval Expression to define the parallel interval. The expression must be
interpretable as integer number. See section 4.9 for more details.

specify this circumstance rather than specifying each lower pitch manually. Refer
to Table 4.14 for a detailed description of parallel interval modifier parameters.
Note that the first and third measure are exactly identical, which is why the individ-
ual musical contexts of these measures were extracted to a fragment and referenced
twice, as already described in section 4.4.5.

4.6.3 Harmonic Modifiers

Harmonic modifiers are used to extend or alter contextually accessible harmonies.
In the model and corresponding score in Figure 4.26, various harmony modifications
of the base harmony A major are demonstrated. The resulting chords of the modi-
fications are: A major, A7, Amaj7, A augmented and A diminished. Refer to section
4.7.1 for details on chord generators.
⌥ ⌅

1 composition
2 {
3 harmony A
4 {
5 rhythm 1
6 {
7 chordGenerator
8 {
9 harmonyModifier 7

10 harmonyModifier maj7
11 harmonyModifier sus4
12 harmonyModifier +
13 harmonyModifier °
14 }
15 }
16 }
17 }⌃ ⇧

Listing 4.21: Language representation of the model in Figure 4.26a demonstrating various
harmony modifiers.

119

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

harmony A

rhythm 1

chordGenerator

harmonyModifier 7 harmonyModifier maj7 harmonyModifier sus4 harmonyModifier + harmonyModifier °

(a) Context tree model representation

Ao

!!!"!# !$$$!% !
A7 $"!!!!

A"
Piano

!!!
A+Asus4

!!!

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.26: Score and context tree model demonstrating various harmony modifica-
tions. Corresponding files are available on the accompanying CD under Examples/Model/
HarmonyModifiers (see Appendix A).

4.7 Context Generators

The purpose of context generators is to create new contexts based on already existing
contexts. For example, pitch contexts can be built based on harmonic contexts, as
explained in the following sections.

4.7.1 Chord Generators

Chord generators create pitch contexts representing specific chord inversions for
contextually available harmonies. Refer to the model in Figure 4.27 for an example,
in which an abstract chord progression is defined using Roman numerals. Concrete
chord inversions are derived using a chord generator, resulting in the score shown
in Figure 4.27b. Chord generators can be flexibly configured for various musical
applications. All possible parameters are described in Table 4.15.

120

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

key E

chord progression I IV ii V I

harmonic rhythm 4 4 4 4 1

rhythm 4 4 4 4 1

chordGenerator

(a) Context tree model representation

!!!
E

"####$ %%
E

%%%
A

Piano
%%%%
B7

% %%%
F#m

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.27: Context tree model demonstrating a chord generator and the resulting
score. Corresponding files are available on the accompanying CD under Examples/Model/
ChordGenerator/SimpleHarmonicProgression (see Appendix A).

121

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

⌥ ⌅
1 composition {
2 key E
3 {
4 harmonicProgression I IV ii V7 I
5 {
6 harmonicRhythm 4 4 4 4 1
7 {
8 rhythm 4 4 4 4 1
9 {

10 chordGenerator
11 }
12 }
13 }
14 }
15 }⌃ ⇧

Listing 4.22: Language representation of the model in Figure 4.27a using a chord generator
to create chord inversions for a given harmony progression.

Table 4.15: Chord generator parameters

Parameter Description

startOctave Defines the octave in which the lowest note of the first
chord is generated.

startInversion Specifies the default inversion of this chord generator. 0
corresponds to the root position, 1 to the first inversion
etc.

numberOfNotes Defines how many notes are generated for each chord.
If this parameter is not specified, the minimum number
of notes to express a harmony adequately are used.
For example, three notes are used for major or minor
chords but four notes for a dominant seventh chord.

includeBassNote If set to true, the bass note (which in some cases can
be different from the root note) is included in chords.

findNearestInversion If set to true, the system will minimize the distance
between successive chords. In other words, inversions
with a minimum aggregated semitone distance to the
previous chord will be used.

122

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

4.7.2 Arpeggio Generators

Arpeggio generators are specialized chord generators which allow to distribute indi-
vidual notes of generated chords sequentially in time. An example is demonstrated
Figure 4.28 and the corresponding language representation in shown in Listing 4.23.

composition

6/8 time

harmony Em

rhythm 8 8 8 8 8 8

arpeggio generator (numberOfNotes 4, noteIndexSequence [0, 1, 2, 3, 2, 1])

(a) Context tree model representation

!! !!!86
"# !Piano

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.28: Context tree model using an arpeggio generator and the resulting score.
Corresponding files are available on the accompanying CD under Examples/Model/
ArpeggioGenerator (see Appendix A).

Arpeggio generators determine concrete chord inversions just like chord generators.
Consequently, all parameters of chord generators (see Table 4.15) can be applied to
arpeggio generators. However, instead of generating simultaneously played notes,
arpeggio generators produce sequentially played notes in a contextually available
rhythm. The generator sequentially chooses notes from the current chord for this
purpose. By default, notes are chosen in ascending order and this sequence is
wrapped if more notes are required. For example, for a D major chord (D-F]-A)
and a rhythm with four notes, the resulting arpeggio sequence would be D-F]-A-D.
The sequence of the selected notes can be influenced with the so called note index
sequence. Each note in the chord is assigned a zero-based index (e.g. for the above

123

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
⌥ ⌅

1 composition
2 {
3 time 6/8, harmony Em
4 {
5 rhythm 8 8 8 8 8 8
6 {
7 arpeggioGenerator (numberOfNotes 4 noteIndexSequence 0 1 2 3 2 1)
8 }
9 }

10 }⌃ ⇧
Listing 4.23: Language representation of the model in Figure 4.28a using a generator to
produce an E minor arpeggio.

mentioned example the indices would be: D) 0, F]) 1, A) 2). To produce
descending instead of ascending arpeggios, the default note index sequence 0 1 2

could be changed to 2 1 0. In the example in Figure 4.28a and Listing 4.23, the
note index sequence 0 1 2 3 2 1 is used which results in an alternating ascending
and descending arpeggio (see Figure 4.28b).
⌥ ⌅

1 composition
2 {
3 time 4/4
4 {
5 harmonicProgression C Dm/C G7/B-B C, harmonicRhythm 1 1 1 1
6 {
7 repeat 4, repeat 2
8 {
9 parallel

10 {
11 arpeggioGenerator (numberOfNotes 2 includeBassNote true)
12 {
13 parallel
14 {
15 rhythm 2
16 rhythm _16 7/16
17 }
18 }
19 arpeggioGenerator (numberOfNotes 3 startInversion 2
20 noteIndexSequence 0 1 2 0 1 2)
21 {
22 rhythm _8 16 16 16 16 16 16
23 }
24 }
25 }
26 }
27 }
28 }⌃ ⇧

Listing 4.24: Language representation of the model in Figure 4.29a producing J. S. Bach,
Prelude in C Major, BWV 846, mm. 1–4.

A more complex example is demonstrated in Figure 4.29 and the corresponding
Listing 4.24. The model produces the first four measures of J. S. Bach’s Prelude
in C Major, BWV 846. Two separate arpeggio generators are used to generate
independent arpeggios for the left and the right hand. An advanced feature is used
in the third chord in the third measure. The harmony is specified as G7 with B in

124

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

the bass. Additionally, a so called note exclusion with the syntax -B is specified. It
instructs the compiler to skip the relevant note during the chord inversion computing
process. As can be seen in measure 3 in the score (Figure 4.29b), the note B is not
present in the arpeggio. To account for this, specific notes can be skipped in the
chord generation process.

composition

4/4 time

harmonicProgression C Dm/C G7/B C

harmonic rhythm 1 1 1 1

repeat 4

repeat 2

parallelization

arpeggio generator
numberOfNotes: 2, includeBassNote: true

arpeggio generator
startInversion: 2, numberOfNotes: 3, noteIndexSequence: [0, 1, 2, 0, 1, 2]

parallelization

rhythm 2 rhythm _16 7 / 16

rhythm _8 16 16 16 16 16 16

(a) Context tree model representation containing two arpeggio generators
Prelude in C major

!"""
#$

"% &" "
"" """

#$
!"

% &" "
"" ""

"
"

% &"
"

&"
""

%"
"
"

#$
!"

#
"

$' "!

()

"(

""%
""

"
"

#$
!""

&"
""

"
" "

#$
!" ""% &"

"% &"
"

"
""

)
'

3

#$
! ""% &"

"
"
"

#$
!""

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.29: Score and context tree model of J. S. Bach, Prelude in C Major, BWV 846,
mm. 1–4. Corresponding files can be found on the accompanying CD under Examples/
Compositions/Bach/BWV846_Prelude_in_C_Major (see Appendix A).

125

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

4.8 Control Structures

Control structures are utilized to dynamically reuse contexts in context tree models
with the help of loops, iterative modifications and other algorithmic constructs,
which are explained in detail in this section.

4.8.1 Parallelizations

composition

3/4 time

parallelization

instrument flute instrument clarinet

reference

melody

reference

rhythm 4. 16 16 16 16 16 16 rhythm 8 16 16 4. 16 16 rhythm 16 16 16 16 9 / 16 rhythm 16 16 16 16 16 16 16 4

pitches 7 6 7 8 7 6 5 pitches 7 7 5 7 6 7 pitches 5 4 2 3 4 pitches 3 2 1 2 3 4 5 4

(a) Context tree model representation
Bolero

!
"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

! "
"

"
"

"
"

"
"

!
!

43
##$ "
43$ "

Clarinet in B%
Flute

"
"

&
&

"
"

""
"

"
"

"
"

"
" ""

"

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation. Note that the clarinet is notated in B[.

Figure 4.30: Score and context tree model of a simultaneously played excerpt from Boléro
by Maurice Ravel. Corresponding files are available on the accompanying CD under
Examples/Compositions/Ravel/Bolero (see Appendix A).

Parallelizations are used to indicate that nested tree branches are not to be evaluated
sequentially, but in parallel. This results in individual musical streams resulting in
multiple parts or voices being played simultaneously.
As an example, a parallel version of an already introduced context tree model is
shown. The model in Figure 4.30 contains a parallelization node to cause the
melody being played simultaneously by flute and clarinet. Syntactically, this is

126

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
⌥ ⌅

1 composition
2 {
3 time 3/4
4 {
5 parallel
6 {
7 instrument flute
8 {
9 fragmentRef melody

10 }
11 instrument clarinet
12 {
13 fragmentRef melody
14 }
15 }
16 }
17 }
18

19 fragment melody
20 {
21 rhythm 4. 16 16 16 16 16 16, pitches 7 6 7 8 7 6 5
22 rhythm 8 16 16 4. 16 16, pitches 7 7 5 7 6 7
23 rhythm 16 16 16 16 9/16, pitches 5 4 2 3 4
24 rhythm 16 16 16 16 16 16 16 4, pitches 3 2 1 2 3 4 5 4
25 }⌃ ⇧

Listing 4.25: Syntactical representation of the Boléro excerpt shown in Figure 4.30a

accomplished with the parallel keyword as demonstrated in Listing 4.25. Com-
pare with the model already presented in Figure 4.11a, which results in sequentially
played melodies.

4.8.2 Repetitions

Repetition is a frequently utilized technique in music composition and is applied
in a variety of forms. As Arnold Schoenberg puts it, “intelligibility in music seems
to be impossible without repetition” (Ockelford 2016, I, p. 2). A common form
of repetitions is known from musical scores, in which repeat signs indicate that a
section of the score is to be played again (as an example, refer to score 4.23).
In MPS, arbitrary subtrees of contexts can be repeated, which can be applied to
single contexts or combinations of musical contexts. Furthermore, repetitions can be
nested hierarchically. This is demonstrated using a context tree model of a simple
drum groove shown in Figure 4.31. The corresponding language representation is
demonstrated in Listing 4.26.
The model contains nested control structures to repeat context subtrees. The outer
structure (repeat 2) repeats the whole measure produced by the subtree below the
parallel element. It produces musical material for closed hi-hats, bass drum and
snare. A nested repetition resulting in 8 eights notes is specified for the hi-hats.
Also, the snare drum repeats the rhythmic pattern of a quarter rest followed by a
quarter note (rhythm _4 4) twice, which is also expressed as a nested repetition.

127

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

4/4 time

tempo 100

repeat 2

parallelization

instrument hiHatClosed instrument bassDrum instrument snare

repeat 8

rhythm 8

rhythm 4 _4 8 8 _4 repeat 2

rhythm _4 4

(a) Context tree model representation

In My Place

Coldplay

!
"

!
"

!
"
!
"

#
!
"

#
!
"

!
"

!
"

#
!
" "

#
!
"

#
!
"

#$ % !!
"
!
"

!
"

!
"

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.31: Score and context tree model of a simple drum groove containing nested
repetitions. Corresponding files are available on the accompanying CD under Examples/
Model/Repetitions (see Appendix A).

128

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
⌥ ⌅

1 composition
2 {
3 time 4/4, tempo 100
4 {
5 repeat 2
6 {
7 parallel
8 {
9 instrument hiHatClosed

10 {
11 repeat 8
12 {
13 rhythm 8
14 }
15 }
16 instrument snare
17 {
18 repeat 2
19 {
20 rhythm _4 4
21 }
22 }
23 instrument bassDrum
24 {
25 rhythm 4 _4 8 8 _4
26 }
27 }
28 }
29 }
30 }⌃ ⇧

Listing 4.26: Syntactical representation of the context model shown in Figure 4.31a using
nested repeated structures.

In this manner, repetitions of musical context subtrees can be hierarchically nested
in arbitrary complexity. The repeat count can be bound to a variable, which can
be utilized to introduce conditional contexts. This technique is demonstrated in the
following section.

4.8.3 Conditions

Condition control structures are used to define conditional contexts. Therefore, an
expression is defined which is evaluated to a boolean expression, yielding either true
or false. Depending on the result, a different context tree branch is followed. This
is illustrated in the model in Figure 4.32, which produces the drum introduction of
In My Place by Coldplay.
The contexts for the cymbals are specified conditionally in this context model. A
condition based on the current repetition counts of an outer and an inner repeat

control structure is specified. It evaluates to true if both the outer and inner repe-
tition count is 1. If this is the case, a crash cymbal is used as instrument context.
In all other cases, open hi-hats are played. In the two measures shown in Figure
4.32b, it can be seen that the condition evaluates to true only in the first measure
on the first beat, on which a crash cymbal is played. On all other beats, especially

129

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

4/4 time

tempo 72

repeat 2 as outerCount

parallelization

cymbals instrument bassDrum instrument snare

repeat 8 as innerCount

rhythm 8

if outerCount == 1 and innerCount == 1

true false

instrument crash instrument hiHatOpen

rhythm 4 _8. 16 _16 16 8 _4 rhythm _4 8. _16 _4 4

(a) Context tree model representation

In My Place

Coldplay

!

"
#

"
! #

"
#
"

!
#
"

$!
#
"
! % #

"
#
"

!
#
" "

$!
#
"

!
&
!' (!

##
"
#
"

! % ! #
""

#

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.32: Context tree model and resulting drum introduction of Coldplay’s In My
Place. Corresponding files are available on the accompanying CD under Examples/
Compositions/Coldplay/In My Place (see Appendix A).

130

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
⌥ ⌅

1 composition
2 {
3 time 4/4, tempo 72
4 {
5 repeat 2 as outerCount
6 {
7 parallel
8 {
9 fragment cymbals

10 {
11 repeat 8 as innerCount
12 {
13 rhythm 8
14 {
15 if outerCount == 1 and innerCount == 1
16 {
17 instrument crash
18 }
19 else
20 {
21 instrument hiHatOpen
22 }
23 }
24 }
25 }
26

27 instrument bassDrum
28 {
29 rhythm 4 _8. 16 _16 16 8 _4
30 }
31

32 instrument snare
33 {
34 rhythm _4 8. _16 _4 4
35 }
36

37 }
38 }
39 }
40 }⌃ ⇧

Listing 4.27: Syntactical representation of the context tree model in Figure 4.32a producing
the drum introduction of Coldplay’s In My Place

on the first beat in the second measure, an open hi-hat is played because the outer
repetition count evaluates to 2 in the second measure.
Condition expressions can be based on arbitrary variables defined in any context
nodes which are hierarchically placed above the current condition node. Notably,
results of function calls can be used to create dynamically modeled compositions
using conditional contexts. Refer to section 4.9.4 for more details.

4.8.4 Iterations

Iterations are used to create loops in which musical material is iteratively modi-
fied. The control structure resembles for loops in general purpose programming
languages. Iterations define a control variable which typically changes its value in
every loop iteration. The model in Figure 4.33 and the corresponding code in Listing
4.28 demonstrate an iteration producing a G minor blues scale (see Figure 4.25).

131

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

composition

key Gm

scale blues

rhythm 4

for degree in 0 to 6

pitches @degree

Figure 4.33: Context tree model using an iteration to produce a G minor blues scale.

⌥ ⌅
1 composition
2 {
3 key Gm
4 {
5 scale blues
6 {
7 rhythm 4
8 {
9 for degree in 0 to 6

10 {
11 pitches @degree
12 }
13 }
14 }
15 }
16 }⌃ ⇧

Listing 4.28: Iteration producing a G minor blues scale

Also refer to section 4.6.1, in which a rhythmic pattern is iteratively displaced using
a corresponding control structure and a suitable rhythmic modifier.

132

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

4.8.5 Sequences

In melodic sequences, a musical phrase is repeatedly played with the same rhythm
but transposed pitches, “the succession of pitch levels rising or falling by the same or
similar intervals” (Randel 2003, p. 768). MPS provides a separate control structure
for melodic sequences. Technically, melodic sequences are translated to an iteration
with nested transpositions.

composition

3/8 time

key Dm

parallelization

rhythm 16 rhythm 8

pitches 9 7 8 9 10 11 5 11 10 9 8 7

sequence (2 times, step -1, mode inScale)

pitches 0 7 2 3 4 5

transpose (mode octaves, offset -1)

sequence (2 times, step -1, mode inScale)

(a) Context tree model representation

!

!! !
!

! !
!
!! !

!
!!

!

!
!

!!
!
!!

!

!!

83"# !
83"$!

Piano

Piano

!

!!! !
!

!

!
!

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.34: Score and context tree model of a sequence from J. S. Bach’s Invention
No. 4 in D minor, BWV 775, mm. 7–10. Corresponding files are available on the accom-
panying CD under Examples/Compositions/Bach/BWV775_Invention_No4_in_D_Minor/
SequenceExample (see Appendix A).

133

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.16: Sequence control structure parameters

Parameter Description

times Specifies how often the sequence is repeated.
step Defines the offset of the iteratively applied transposition. The unit

of this expression is defined by the mode parameter.
mode Defines the unit of the interval expression. Three modes are avail-

able: absolute for semitone-based transpositions, inScale to per-
form transpositions of scale degrees and octaves for octave trans-
lations. If the parameter is not specified, the default absolute will
be used.

The model in Figure 4.34 represents a sequence from J. S. Bach’s Invention No. 4
in D minor, BWV 775. The model can be syntactically represented as shown in
Listing 4.29. Sequence control structures are applied both to the right hand and
the left hand part. Both sequence control structures are applied twice (2 times).
In the first iteration, the specified pitches are adopted without modification. In the
second iteration, the pitches are transposed one step down. Consequently, the scale
degrees of both parts are diatonically transposed down in parallel. Refer to Table
4.16 for detailed parameter descriptions.
⌥ ⌅

1 composition
2 {
3 time 3/8, key Dm
4 {
5 parallel
6 {
7 rhythm 16
8 {
9 pitches 9 7 8 9 10 11 5 11 10 9 8 7

10 {
11 sequence 2 times step -1 mode inScale
12 }
13 }
14 rhythm 8
15 {
16 pitches 0 7 2 3 4 5, transpose mode octaves -1
17 {
18 sequence 2 times step -1 mode inScale
19 }
20 }
21 }
22 }
23 }⌃ ⇧

Listing 4.29: Language representation of the context tree model of a melodic sequence
from J. S. Bach’s Invention No. 4 in D minor, BWV 775 shown in Figure 4.34a.

134

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

4.8.6 While-Loops

The contents of while-loops are applied as long as a specified condition is fulfilled.
An example is demonstrated in Figure 4.35. The loop is applied while the measure
number is less than or equal to 2 (i.e. in the first two measures). The current
measure number can be retrieved using the function getMeasureNumber(). Pitches
are chosen randomly using another function call to getRandomInteger(). Refer to
section 4.9.4 for more details on function calls.

composition

while getMeasureNumber() <= 2

rhythm 8

pitches @getRandomInteger(0, 7)

(a) Context tree model representation

! ! !! !! ! ! ! !Piano !" # ! ! !!!

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.35: Context tree model and resulting score demonstrating a while loop to generate
randomly pitched notes. Corresponding files are available on the accompanying CD under
Examples/Model/While (see Appendix A).

⌥ ⌅
1 composition
2 {
3 while getMeasureNumber () <= 2
4 {
5 rhythm 8
6 {
7 pitches @getRandomInteger (0, 7)
8 }
9 }

10 }⌃ ⇧
Listing 4.30: Language representation of the context tree model in Figure 4.35a
demonstrating a while loop to generate randomly pitched notes.

135

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

4.8.7 Switches

This control structure selects and processes only one of the specified child tree
branches for each invocation. If the structure is encountered again (e.g. due to
a repeat), the next child branch is processed. If no more child branches are avail-
able, processing continues from the first child branch again.
An example is provided in the context tree model in Figure 4.36, in which the same
melody is repeated three times. The switch control structure applies three different
lyric contexts for each loop iteration. The corresponding language representation is
shown in Listing 4.31.

composition

instrument vocals

repeat 3

rhythm (4) 4 _2. rhythm (8 8 8) 4 _2.

pitches 4 2

lyrics 'Hey Jude'

pitches 2 4 5 1

switch

lyrics 'don't make it bad' lyrics 'don't be af-raid' lyrics 'don't let me down'

(a) Context tree model representation

down
! "#$ " !

don't me

!
let

!#
make

!
don't
!"$

bad
!

it

! !
Hey

!
Jude don't

!"$Vocals !% &
Hey Jude

!
raid

!
Hey

!
Judebe

!
af
!!

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 4.36: Context tree model and resulting score demonstrating a switch control struc-
ture. Corresponding files are available on the accompanying CD under Examples/Model/
Switch (see Appendix A).

136

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE
⌥ ⌅

1 composition
2 {
3 instrument vocals
4 {
5 repeat 3
6 {
7 rhythm (4) 4 _2.
8 {
9 pitches 4 2

10 {
11 lyrics "Hey Jude"
12 }
13 }
14 rhythm (8 8 8) 4 _2.
15 {
16 pitches 2 4 5 1
17 {
18 switch
19 {
20 lyrics "don ’t make it bad"
21 lyrics "don ’t be af-raid"
22 lyrics "don ’t let me down"
23 }
24 }
25 }
26 }
27 }
28 }⌃ ⇧

Listing 4.31: Language representation of the context tree model in Figure 4.36a
demonstrating a switch control structure.

It is also possible to define non-consecutive processing sequences. This is done by
specifying a so called child index sequence, as demonstrated in Listing 4.32.⌥ ⌅

1 switch childIndexSequence 0 0 1⌃ ⇧
Listing 4.32: Switch control structure defining a custom child index sequence

The switch specified in Listing 4.32 will process the first child branch twice, followed
by the second child branch. If invoked again, processing will start over at the
beginning of the custom sequence.

4.9 Expressions

Expressions are used to specify dynamic parameters in context tree models. These
are especially useful for algorithmic composition, in which certain musical param-
eters are computed based on mathematical rules. MPS uses a custom expression
language supporting logical and arithmetic expressions with variables and function
calls.

137

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.17: Expression language literals

Type Description Internal Type

boolean Boolean value. Permitted literals are true and false. boolean

integer Integer number with optional negative sign, such as
42, -23 or 0.

int

float Floating point number with optional negative sign,
such as 3.1415 or -2.1.

double

fraction Fraction represented by an integer numerator and
integer denominator, for instance 1/4. Arithmetic
divisions automatically result in a fraction if both
operands are integer numbers.

Fraction
3

string Represents a sequence of zero or more characters en-
coded in UTF-16

4
String

5

4.9.1 Literals

A basic unit of information in the expression language is given in the form of literals.
Refer to Table 4.17 containing a summary of available literal types.

4.9.2 Operators

The system supports boolean operators, comparison operators and arithmetic op-
erators. The operators are listed in Table 4.18 ordered by operator priority, from
highest to lowest precedence. Parentheses may be used for custom operator priori-
tization, for example:⌥ ⌅

1 (2 + 3) * 4⌃ ⇧
Listing 4.33: Example expression containing a parenthesized expression

In the expression in Listing 4.33, the term 2+3 is evaluated first and the result is
multiplied with 4. If no parentheses would be used, 3*4 would be evaluated first
due to higher precedence of the multiplication operator.

Table 4.18: Expression language operators ordered by priority

Operator Description

! Unary boolean negation operator. For example, !true evaluates to
false.

- Unary arithmetic negation. For example, -(2+1) evaluates to -3.

* Arithmetic multiplication

Continued on next page

138

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.18 – Continued from previous page

Operator Description

/ Arithmetic division. Results in a fraction if both operands are integer
numbers.

% Modulo operator

+ Arithmetic addition. May also be used to concatenate strings.
- Arithmetic subtraction

== Evaluates to true if the left operand is equal to the right operand.
!= Evaluates to true if the left operand is not equal to the right

operand.

< Evaluates to true if the left operand is less than the right operand.
> Evaluates to true if the left operand is greater than the right

operand.
<= Evaluates to true if the left operand is equal to or less than the right

operand.
>= Evaluates to true if the left operand is equal to or greater than the

right operand.

and Boolean and operator. Result of the expression is true if and only
if both operands evaluate to true.

or Boolean or operator. Result of the expression is true if at least one
of the operands evaluates to true.

4.9.3 Type Conversions

Expressions are dynamically cast if required. For example, to evaluate the expression
in Listing 4.34, several dynamic type casts are applied.⌥ ⌅

1 1 + 0.7 > 3/4 and !(n % 2)⌃ ⇧
Listing 4.34: Expression requiring dynamic type casts

To sum 1 + 0.7, 1 is implicitly converted to a floating point number. To evaluate
the comparison 1.7 > 3/4, 1.7 is automatically converted to the fraction 17

10
. The

result of the left-hand comparison 17

10
> 3

4
yields true. The modulo operation on

the right hand side results in the remainder of n being divided by 2 (Flanagan 2005,
p. 33). The remainder is wrapped in a boolean negation. This implies that the
remainder must implicitly be cast to a boolean expression. It evaluates to false if
the remainder is equal to zero and to true otherwise. The boolean result of this
implicit cast is negated and then used as right operand for the and conjunction.

139

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.19: Implicit type conversion rules. If two different types are combined as operands
of an operator, one operand will implicitly be converted to the resulting type.

Type 1 Type 2 Resulting Type

boolean integer integer

boolean float float

boolean fraction fraction

boolean string string

integer float float

integer fraction fraction

integer string string

float fraction fraction

float string string

fraction string string

The right hand side of the and -operator can also be read as: ‘if n is dividable by 2’.
Refer to Table 4.19 for an overview of implicit type conversion rules and Table 4.21
for an explanation of the applied transformations.

4.9.4 Function Calls

Functions are used to dynamically retrieve musical context information. They are
evaluated during the compilation process (see section 5.2). The returned values
depend on the given parameters, the stream context and the temporal context in
which they are invoked. Refer to Table 4.20 for an overview of available functions.

Table 4.20: Table of available functions

Signature Return Type Description

getRootNote() NoteReference Returns the root note of the cur-
rent context harmony.

getBassNote() NoteReference Returns the bass note of the
current context harmony, which
can in some cases be different
from the root note.

getRandomBoolean() boolean Returns a random boolean
value, i.e. true or false.

getRandomInteger(min, max) integer Returns a random integer value
between min (inclusive) and max

(exclusive).

Continued on next page

140

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

Table 4.20 – Continued from previous page

Operator Description

getRandomDouble(min, max) double Returns a random double value
between min (inclusive) and max

(exclusive).

getTime() fraction Returns the current time in the
current stream in terms of note
duration (e.g. after a quarter
note, the elapsed time is 1

4
). Re-

fer to section 3.4 for more de-
tails.

getTimeSignature() TimeSignature Returns the current time signa-
ture.

isInFragmentContext(string) boolean Returns true if the current con-
text stack contains the fragment
with the given name, false oth-
erwise.

4.10 Implementation Details

The last part of this chapter provides technical details about the architecture and
implementation of the context tree composition model and the language infrastruc-
ture in MPS.

4.10.1 Composition Domain Model

The core domain model for MPS contains all basic data structures which are needed
to represent musical compositions. It is comprised of about 125 data structure
types (also referred to as classes in object-oriented programming) and about 15
enumerations of domain-specific concepts. Its class diagram showing all data types
and associations can be found on the accompanying CD (see Appendix A). Due to
its huge dimensions, printing is not possible using common page layouts.
The model was developed using the Eclipse Modeling Framework (EMF)6, which
is a toolkit for Java developers to create and edit data model definitions. More-
over, the framework offers the functionality to generate programming code from
model definitions, which can later be extended easily. By this means, developers do

6
https://www.eclipse.org/modeling/emf/

141

https://www.eclipse.org/modeling/emf/

C
H

A
P

T
E

R
4.

C
O

N
T

E
X

T
T

R
E

E
M

O
D

E
L

A
N

D
C

O
M

P
O

SIT
IO

N
LA

N
G

U
A

G
E

Table 4.21: Type cast specifications. Source types are listed on the left, target types are listed in the columns on top.

boolean integer float fraction string

boolean - false) 0

true) 1

false) 0.0

true) 1.0

false) 0

1

true) 1

1

false) ’false’

true) ’true’

integer false if equal to
0, true otherwise

- as specified by
doubleValue

7

n
1

as specified by
valueOf

8

float false if equal to
0.0, true
otherwise

bfc, i.e. the
nearest integer
below the value of
the floating point
number f

- Nearest
computable
fraction as
specified by
Fraction

9

as specified by
valueOf

10

Continued on next page

7
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#doubleValue()

8
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(int)

9
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#

Fraction(double)

10
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(double)

142

https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#doubleValue()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(int)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#Fraction(double)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#Fraction(double)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(double)

C
H

A
P

T
E

R
4.

C
O

N
T

E
X

T
T

R
E

E
M

O
D

E
L

A
N

D
C

O
M

P
O

SIT
IO

N
LA

N
G

U
A

G
E

Table 4.21 – Continued from previous page

boolean integer float fraction string

fraction false if fraction
is equal to 0

1
,

true otherwise

Whole number
part of the
fraction as
specified by
intValue

11

as specified by
doubleValue

12

- as specified by
toString

13

string false if string is
empty, true
otherwise

as specified by
parseInt

14

as specified by
parseDouble

15

Supported if
string contains
two integer
numbers
separated by a
slash (/) or a
single integer
number

-

11
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#intValue()

12
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#doubleValue()

13
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#toString()

14
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#parseInt(java.lang.String)

15
https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#parseDouble(java.lang.String)

143

https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#intValue()
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#doubleValue()
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/fraction/Fraction.html#toString()
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#parseInt(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#parseDouble(java.lang.String)

CHAPTER 4. CONTEXT TREE MODEL AND COMPOSITION LANGUAGE

not have to write circumstantial programming code (such as methods to access or
change model attributes and infrastructure for notifications of model changes) for
each model element themselves. Instead, developers are able to focus on essential
programming tasks (Steinberg et al. 2008). Moreover, EMF provides facilities for
model object persistence, i.e. saving and loading models to/from files.
The composition domain model forms the basis of all other models developed in this
dissertation, namely the context layer model (see Chapter 3), the context tree model
(introduced in this chapter) and the score model (to be described in Chapter 5.3).

4.10.2 Domain-Specific Composition Language

The domain-specific description language for context tree composition models MC2L
proposed in this dissertation was designed using the framework Xtext16. Xtext is
a powerful framework for developing programming languages and domain-specific
languages.
In order to develop a computer language, developers provide a grammar in a custom
Xtext syntax. It contains grammar rules based on the EBNF and bindings to a data
model. MC2L is based on the composition domain model introduced in the previous
section. The complete language grammar is attached in full length in Appendix B.1.
Based on the grammar, Xtext generates a sophisticated language infrastructure in-
cluding lexer, parser, serializer, validation facilities and an editor for the language
with basic syntax coloring, automatic code completion, outline view, hyperlinking
and refactoring support. Based on the generated code, all components of the lan-
guage infrastructure can further be refined and extended. Refer to Figure 4.37 for
a visual impression of the editor.

4.11 Summary

Context tree composition models accommodate hierarchically arranged elements for
describing musical structures, according modifications and algorithmic processes.
Musical information can be reused in various ways, including inheritance, polymor-
phism, auto expansion and modularization. Expressions enable the specification of
dynamic musical parameters. An advanced graphical editor is available for the de-
velopment of composition models in a corresponding domain-specific language. The
model representations proposed in the previous two chapters allow novel approaches
for musical applications, which are demonstrated in the following chapters.

16
http://www.eclipse.org/Xtext/

144

http://www.eclipse.org/Xtext/

Figure 4.37: Screenshot of the editor for the musical context composition language. Automatic code completion is currently invoked.

145

Part II

System Applications

146

Chapter 5

Model Transformations

The old idea of a composer suddenly having a terrific
idea and sitting up all night to write it is nonsense.
Nighttime is for sleeping.

— Benjamin Britten

Music Processing Suite provides an extensive infrastructure for music format conver-
sions. This includes conversions between the music model representations introduced
in the previous chapters. Furthermore, these model representations can be derived
from standard formats such as MIDI and MusicXML. This chapter includes in-depth
descriptions for all relevant transformations.

5.1 Transformation Infrastructure Overview

An overview of possible transformations is shown in Figure 5.1. The upper left part
of the illustration relates to the internal model representations of MPS, which can be
translated to MC2L language representations and stored in corresponding files. An
appropriate parser is responsible for translating language representations into equiv-
alent context tree representations. In the other direction, a serializer performs the
task of translating a context tree representation into its corresponding language rep-
resentation. Implementation details of these transformations were already described
in Chapter 4.10.
The left side of the Figure presents possible transformations regarding symbolic
standard formats for music, namely MIDI and MusicXML. With appropriate parsers,
scores available in the named formats can be converted to context layer models.
These transformations are covered in Chapters 5.5 and 5.6.

147

CHAPTER 5. MODEL TRANSFORMATIONSInfrastructure

Model
Compiler

Language
Parser

Language
Serializer

Context
Tree

Model

Context
Layer Model

Score
Compiler

Score Model

MC2L

LilyPond
Compiler LilyPond

Analysis
Infrastructure

MIDI Parser

MusicXML
Parser

MIDI

MusicXML

PDF

Legend
Files

Models

Components

CSV

Analysis
Report

Generator

Model
Deriver

LaTeX

SuperCollider
Compiler

SuperCollider

Graphviz

Context Layer
Graphics
Generator

Graph
Generator

SVG

Evolutionary
Algorithm
Composer

Figure 5.1: Music Processing Suite transformation infrastructure

In the center of the diagram, internal model transformations are shown. This in-
volves transforming context tree models into context layer models (covered in sec-
tion 5.2) and various formats into which context layer models can be converted, such
as musical scores (described in Section 5.3) and the SuperCollider language (Sec-
tion 5.4). Finally, an algorithm is proposed for deriving context tree models from
stream models, which closes the circle of the most important conversions available
in MPS. The other components visible in Figure 5.1, namely the analysis infrastruc-
ture and the evolutionary composer component, are explained in Chapters 7 and 8,
respectively.

5.2 Transforming Context Tree Models to Context

Layer Models

A crucial transformation in MPS is the translation of context tree models into con-
text layer models, which can be described as an expansion of a compressed com-
position model into an equivalent time-based representation. This functionality is
provided by a compiler. Its mode of operation is explained using the context tree
model and resulting data structures in Figure 5.2.
The compiler traverses the context tree recursively from top to bottom. Each en-
countered node is put on a stack until the compiler reaches a leaf node (i.e. a node
which has no child nodes). At each leaf node, the current musical contexts are de-

148

CHAPTER 5. MODEL TRANSFORMATIONS

termined. This can be achieved by looking for the following contexts in the stack,
returning the first context found of the specified type, respectively:

1. Harmonic Progressions

2. Harmonic Rhythms

3. Rhythms

4. Pitches

5. Instruments

6. Keys

7. Harmonies

8. Lyrics

9. Custom Contexts

In case a context is not found in the stack, a default context will be assigned if
applicable. Default contexts are listed in Table 5.1.

Table 5.1: Default context values

Context Default Value

Instrument Piano

Key C Major

Harmony C Major

Time Signature 4

4

Tempo 120 BPM

If the compiler encounters a parallelization control structure (the semantics of which
were introduced in section 4.8.1), it is put on a separate stack. The corresponding
stack entry also contains the current parallelization index, indicating which child
structure of the parallelization is currently processed.

149

In
pu

t C
on

te
xt

 T
re

e
M

od
el

Co
m

pi
le

r S
ta

ck
s

parallelization
index: 0

harmonic rhythm
1 2 2 2 2 2 2

harmonic progression
C G7 C F C G7-F4 C

pitches (startOctave 5)
0 2 4 -1 0 1 0

rhythm
2 4 4 4. 16 16 4 _4

parallelization
index: 1

harmonic rhythm
1 2 2 2 2 2 2

harmonic progression
C G7 C F C G7-F4 C

arpeggio generator
numberOfNotes: 3

noteIndexSequence:
[0,2,1,2]

rhythm
8 8 8 8

composition

harmonicProgression C G7 C F C G7-F4 C

harmonic rhythm 1 2 2 2 2 2 2

parallelization

rhythm 2 4 4 4. 16 16 4 _4 repeat 8

pitches (startOctave 5) 0 2 4 -1 0 1 0 rhythmic insertion
mode: overwrite, offset: 1, rhythm 4 8 16 16 4

pitches (startOctave 5) 5 4 7 4 3 2 3 2

rhythm 8 8 8 8

arpeggio generator
numberOfNotes: 3, noteIndexSequence: [0, 2, 1, 2]

parallelization
index: 0

pitches (startOctave 5)
5 4 7 4 3 2 3 2

rhythmic insertion
mode: overwrite

offset: 1
rhythm 4 8 16 16 4

harmonic rhythm
1 2 2 2 2 2 2

rhythm
2 4 4 4. 16 16 4 _4

harmonic progression
C G7 C F C G7-F4 C

Context Stack Parallelization Stack Context Stack Parallelization Stack Context Stack Parallelization Stack

Figure 5.2: Context tree model of W. A. Mozart, Piano Sonata No. 16 in C major, K. 545, mm. 1–4 and the resulting context and parallelization
stacks in the compiler during the transformation to a context layer model

150

CHAPTER 5. MODEL TRANSFORMATIONS

As illustrated in Figure 5.2, the context stack contains the following items at the
leftmost leaf node:

1. harmonic progression C G7 C F C G7-F4 C

2. harmonic rhythm 1 2 2 2 2 2 2

3. rhythm 2 4 4 4. 16 16 4 _4

4. pitches (startOctave 5) 0 2 4 -1 0 1 0

Furthermore, the following default contexts are added:

1. instrument piano

2. key C

3. time 4/4

4. tempo 120

First, the harmonic progression context layer is generated. To determine the du-
ration of the given harmonies, a harmonic rhythm context is required, as already
explained in section 4.5.8. Subsequently, rhythm-based events are generated. There-
fore, rhythmic notes are matched with pitches and lyric syllables, if applicable. Auto
expansion is applied if possible, as introduced in section 4.4.4. The remaining con-
texts are added to the resulting context layer model with the duration of the cur-
rently processed rhythm (in the example, the duration of the rhythm 2 4 4 4. 16

16 4 _4 is 2 measures). The intermediate result after processing the leftmost leaf
node is shown in Figure 5.3.
The context stack at the second leaf node contains a context modifier, namely a
rhythmic insertion. If one or more modifiers are present in the stack, they are applied
after the context identification process in the order they appear in the context tree
model (i.e. the reverse order they appear in the context stack). In the case of the
example shown in Figure 5.2, the second half of the original rhythm used in the first
two measures is replaced.
Finally, context generators are executed if present in the stack at a leaf node. In the
example, this is the case at the third, rightmost leaf node. It contains an arpeggio
generator which creates the left hand accompaniment. It is invoked 8 times as
the compiler unfolds the corresponding repeat 8 control structure. The semantics
and parameters of arpeggio generators were already explained in section 4.7.2. The
resulting context layer model of the transformation is shown in Figure 5.4.

151

Meter (4) 4/4 time 4/4 time

Key (1) C

Harmony (7) C G7 C F C G7-F C

Harmonic Rhythm (7) 1 2 2 2 2 2 2

Rhythm (17) 2 4 4 4. 16 16 4 _4

Scale (1) major

Degrees (17) 0 2 4 -1 0 1 0

Pitches (17) C5 E5 G5 B4 C5 D5 C5

Loudness (1) loudness mf

St
re

am
 1

Time (Measures) 1 2 3 4

Time (Absolute) 0 1 2 3

Figure 5.3: Intermediate context layer model of W. A. Mozart, Piano Sonata No. 16 in C major, K. 545, mm. 1–4, after processing the leftmost
leaf node of the model shown in Figure 5.2.

Meter (4) 4/4 time 4/4 time 4/4 time 4/4 time

Key (1) C

Harmony (7) C G7 C F C G7-F C

Harmonic Rhythm (7) 1 2 2 2 2 2 2

Rhythm (17) 2 4 4 4. 16 16 4 _4 2 4 4 4 8 16 16 4 _4

Scale (1) major

Degrees (17) 0 2 4 -1 0 1 0 5 4 7 4 3 2 3 2

Pitches (17) C5 E5 G5 B4 C5 D5 C5 A5 G5 C6 G5 F5 E5 F5 E5

Loudness (1) loudness mf

St
re

am
 1

Meter (4) 4/4 time 4/4 time 4/4 time 4/4 time

Key (1) C

Harmony (7) C G7 C F C G7-F C

Harmonic Rhythm (7) 1 2 2 2 2 2 2

Rhythm (32) 8

Scale (1) major

Pitches (32) C4 G4 E4 G4 C4 G4 E4 G4 D4 G4 F4 G4 C4 G4 E4 G4 C4 A4 F4 A4 C4 G4 E4 G4 B3 G4 D4 G4 C4 G4 E4 G4

Loudness (1) loudness mf

St
re

am
 2

Time (Measures) 1 2 3 4

Time (Absolute) 0 1 2 3

Figure 5.4: Context layer model of W. A. Mozart, Piano Sonata No. 16 in C major, K. 545, mm. 1–4. Corresponding input and output files are
available on the accompanying CD under Examples/Compositions/Mozart/KV545_SonataFacile (see Appendix A).

152

CHAPTER 5. MODEL TRANSFORMATIONS

5.3 Transforming Context Layer Models to Score

Representations

The previously described context layer model transformation is already an essential
intermediate step in order to produce musical scores. The score compiler is respon-
sible for converting all time-based context layer model events with score-specific
events such as time signature changes, key changes, tempo specifications, notes and
rests.
The implementation uses stream sequencers to traverse each available stream, which
results in a sequence of stream events (see Chapter 3.6). Each stream event is con-
verted to a score-specific event. In most cases, this results in a note or a rest. Oth-
erwise, instructions for metric changes, key/harmony changes and clefs are added.
This results in an abstract score model which is convertible to any symbolic score
format. The structure of the abstract score model is illustrated in Figure 5.51.

Score Model

Metadata

Staves
Staff Name Short NameID

Instructions
Time

 Signature Tempo Clef Key Note Note Note Note Note Note Note Rest

…

…

Title Composer Poet Copyright

Figure 5.5: Abstract score model structure

5.3.1 LilyPond Compiler

MPS supports the compilation of abstract score models to the LilyPond markup
language (Nienhuys and Nieuwenhuizen 2003). The compiler outputs each instruc-
tion and note in a LilyPond-specific syntax and writes the results to a LilyPond file.
These in turn can be converted using a LilyPond compiler, resulting in PDF files con-
taining the visual score and MIDI files for playback of the piece. The corresponding
LilyPond code for the previously introduced example is shown in Listing 5.1.
Figure 5.6 shows the PDF file resulting from the LilyPond compilation of the exam-
ple shown in the last sections.

1The class diagram of the score model is available on the accompanying CD, see Appendix A

153

CHAPTER 5. MODEL TRANSFORMATIONS
⌥ ⌅

1 \version "2.12.0"
2 #(set -default -paper -size "a4")
3

4 \header {
5 title = "Sonata Facile (KV 545), 1st movement"
6 composer = "W. A. Mozart"
7 }
8

9 \score {
10 <<
11

12 \new Staff {
13 \set Staff.midiInstrument = #" acoustic grand"
14 \clef treble
15 \time 4/4
16 \key c \major
17 c’’2 e’’4 g’’
18 b’4. c’’16 d’’ c’’4 r
19 a’’2 g’’4 c’’’
20 g’’ f’’8 e’’16 f’’ e’’4 r
21 }
22

23 \new Staff {
24 \set Staff.midiInstrument = #" acoustic grand"
25 \clef treble
26 \time 4/4
27 \key c \major
28 c’8 g’ e’ g’ c’ g’ e’ g’
29 d’ g’ f’ g’ c’ g’ e’ g’
30 c’ a’ f’ a’ c’ g’ e’ g’
31 b g’ d’ g’ c’ g’ e’ g’
32 }
33

34 >>
35

36 \midi {
37 \context {
38 \Score
39 tempoWholesPerMinute = #(ly:make -moment 120 4)
40 }
41 }
42 \layout {
43 indent = 0\cm
44 }
45 }⌃ ⇧

Listing 5.1: LilyPond representation of W. A. Mozart’s Piano Sonata No. 16 in C major,
K. 545, mm. 1–4

Sonata Facile (KV 545), 1st movement

! !

!

!

!

!

"

! !

#

!

! !

!

$ %

$ % !

&

!
!

!!! !

!

!

!

!
!

!

!

!

!

! !

#

! !

! !

! !

&

! ! !
!

3

$
$!

!

! !!

!

!

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 5.6: Score of W. A. Mozart, Piano Sonata No. 16 in C major, K. 545, mm. 1–4

154

CHAPTER 5. MODEL TRANSFORMATIONS

5.4 Transforming Context Layer Models to

SuperCollider

SuperCollider is a sound synthesis environment featuring a “domain-specific pro-
gramming language specialized for sound but with capabilities to rival any general-
purpose language” (Wilson et al. 2011, p. xiii). A crucial data structure for sound
production in SuperCollider are so called events, which are represented by a collec-
tion of key/value pairs. Common examples for keys are duration (dur), loudness
(amp), instrument or sustain. Events can be generated using higher-level data
structures called event patterns (Wilson et al. 2011, p. 182). Predefined pattern
classes are available to model parallel processes (represented by the class Ppar) and
sequential processes (implemented by the class Pseq).
A compiler was implemented transforming context layer model representations to
nested SuperCollider pattern structures. The current implementation produces code
which invokes the MIDI engine of SuperCollider to produce MIDI events. The
compiled SuperCollider code of the previously introduced example is demonstrated
in Listing 5.2.
⌥ ⌅

1 MIDIClient.init;
2 m = MIDIOut (0);
3 TempoClock.default.tempo = 120/60/4;
4
5 Pbindef(\p0 ,
6 \type , \midi ,
7 \midiout , m,
8 \chan , 0,
9 \amp , 60/127 ,

10 \midinote , Pseq ([72, 76, 79, 71, 72, 74, 72, -1, 81, 79, 84, 79, 77, 76,
77, 76, -1]),

11 \dur , Pseq ([1/2 , 1/4, 1/4, 3/8, 1/16, 1/16, 1/4, 1/4, 1/2, 1/4, 1/4, 1/4,
1/8, 1/16, 1/16, 1/4, 1/4])

12);
13
14 Pbindef(\p1 ,
15 \type , \midi ,
16 \midiout , m,
17 \chan , 1,
18 \amp , 60/127 ,
19 \midinote , Pseq ([60, 67, 64, 67, 60, 67, 64, 67, 62, 67, 65, 67, 60, 67,

64, 67, 60, 69, 65, 69, 60, 67, 64, 67, 59, 67, 62, 67, 60, 67, 64, 67]),
20 \dur , 1/8
21);
22
23 Pdef(\p0).reset;
24 Pdef(\p1).reset;
25 Pdef(\p0).play;
26 Pdef(\p1).play;⌃ ⇧

Listing 5.2: SuperCollider code of W. A. Mozart, Piano Sonata No. 16 in C major, K. 545,
mm. 1–4

In the first two lines in Listing 5.2, the MIDI client is initialized an the first output

155

CHAPTER 5. MODEL TRANSFORMATIONS

is assigned to the global variable m. SuperCollider provides a global TempoClock,
which schedules events on a time grid of beats and bars. The clock can be configured
to have a tempo (e.g. 120 BPM) and a certain number of beats per bar (e.g. 4). To
compute the amount of time (in seconds) between two beats, the following formula
can be applied (where b are the number of beats per minute):

b beats
minute

=
b beats

60 s
=

60

b s

beat
(5.1)

The time interval between two beats is computed in line 3 in Listing 5.2 and the
default TempoClock is configured accordingly. Below, two pattern definitions were
generated, containing musical parameters resulting in sequences of events. Apart
from MIDI-specific configuration data, the patterns are populated with a constant
loudness (\amp) and sequences of pitches (\midinote) and durations (\dur).
The utilization of SuperCollider synthesizer definitions (SynthDefs) could be a
promising future extension. This would enable the composition of electroacous-
tic music, which makes use of sound synthesis processes with individually defined
sound parameters. These parameters could be mapped to musical context layers (as
introduced in Chapter 3.3) or to custom context layers (see Chapter 4.5.10).

5.4.1 Immediate Compilation and Execution

By default, the compiler writes the resulting SuperCollider code to a file with the
extension *.scd. To execute this code, it has to be loaded manually into a Super-
Collider interpreter. Additional functionality was developed, with which the code is
automatically executable in a running SuperCollider instance. This feature enables
the immediate playback of a composition model directly from the MPS application.
This was implemented using the data transmission protocol Open Sound Control
(OSC). Using this protocol, MPS is able to communicate with a SuperCollider soft-
ware instance. In particular, the compiled code is transmitted to SuperCollider over
a local User Datagram Protocol (UDP) socket. The implementation of this func-
tionality is provided by the library JavaOSC2. The UDP protocol does not verify
the delivery of network packets and does not guarantee that network packets ar-
rive in the exact order in which they were sent (Bagad and Dhotre 2009, p. 1-8).
However, other protocols supporting these criteria, such as Transmission Control
Protocol (TCP), can be used in conjunction with OSC (Schmeder et al. 2010).

2
https://www.illposed.com/software/javaosc.html

156

https://www.illposed.com/software/javaosc.html

(a) Piano roll representation of the upper part (b) Piano roll representation of the lower part

{

{

{

{

{

{

{
©MichaelKravchuk.com

f f

Allegro con fuoco q = 160

4

f p f

8

p fz

12

p

16

p fz p fz

20

p fz

24

c

c

&
b
b
b

legatissimo

> 5

4
3

>
5 4

Revolutionary Etude
Frédéric Chopin

Op. 10 No. 12

?
b
b
b

2 1 2

>

4 3 1 2

>

4 3 1

>

1

>

1
>

1

2

>

5

1

5 2

>
5

1

5 3

> .

2 1

>

1

>

1

>

1

>

1
>

1

2

>

5

1

5 2

>
5

1

5

>

&
b
b
b

3

1

. 4 3 2

>

1
4

3 2
>

1
4

>
4

>
4

>

4

> cresc.

?
b
b
b

3

.

&

con fuoco

2
1

>

1

>

1

>
1

?

> 1

>

1

>

4

1

>

4

1

3

>

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

3>

œ
œ œ œ

>

œ
œ œ œ œ œn

œ œ œ œ œ œ œ œn

œb œ œ œ œ œ œ œ

œœœ œn œ œn œ œ œ œ œ œ œ œ

&
b
b
b

2

4
5

4

5
> 4

5
4

?
b
b
b

5 2 1

4
3 2 1

3 2 1 2 3 4 1 2

5

2
1 3 2 1 3 1 4 3 2 1 1 3 1 3 1

œ

j

&
b
b
b

5
>

ten.

3

.
>

5 4 5

>
>

4

5

4>

?
b
b
b

4 3 1 1

5

2
1 3 2 1 1 3 1

5

1 4 2

1

1

5

1 4 2

1

1

5

1 4 2

1
1

5

1 4 2

1
1

&
b
b
b

5 4

n
b

>

5

2

4

∑

4

5 4

?
b
b
b

5

1
3 4 2 3 1 4

2 3 1

3
1 4 2

3 1 4 2 3 1 1 1
1

2
4 5

4 1 3 1 1

5

1 3 1 1

&
b
b
b

5
>

cresc.

4

5 4
5
>

ten.

?
b
b
b

5
4 1 3 2 1 1

5
1 3 1

5
4 1 3 1 1

5
1 3 1

&
b
b
b

2

4

5

cresc.

4 5
4

stretto

5
4

>

n
b

.

?
b
b
b

5

3 2 4

4 2

3 3 2 4

4 2

3 3 4
2

3 5 1 3 2 1 2 1 4 1
5

4

1 4 1 4 1 4 1

3

˙
˙̇
˙
˙n

n

Ó Ó Œ

œ
œœ
œ ™

™
™
™

œ

œ

˙
˙̇
˙

Ó Ó Œ

œ
œœ
œ ™

™
™
™

œ

œ

‰

œ œ œ
œ œ œ

œn
œ œ œ œ

œ œ œ
œn
œ œ œ œ

œ œ œ œ
œ
œ
œ
œ
œ
œ
œ

œn

j

œ œ œ
œ œ œ

œn
œ œ œ œ

œ œ œ
œn
œ œ œ œ

œ œ œ œ
œ
œ
œ
œ
œ
œ
œ

œ
œ
œœ

J

œ œ œ
œ œ œ

œn
œœœœ

œœœ
œn
œœœœ

œœœ

œn

j

œ œ œ
œ œ œ

œn
œœœœ

œœœ

œn
œœœœ

œœœ
œn
œ œ œ œ

œ œ œ œ œn

œ œ œ œ œ œ œ œ

œb œ œ œ œ œ œ œ

œœœ œn œ œ œ œ œ œ œ œ œ œ

‰ Œ Ó Ó ‰ ≈

œ

œ

œ

œ ™

™ œ

œ

˙

˙
‰ ≈

œ
œ
œ
œ

œ
œ
œ
œ ™

™
™
™ œ

œ
œ
œ

˙
˙
˙
˙

œ
œ
œ
œ
J

≈

œ

œ

œ

œ ™

™ œ

œ

œ
œ
œ œ œ

œ
œ œ œ œ œ

œ
œ œ œ

œ
œ
œ
œ œ œ œ œ

œ
œ
œ
œ œ œ œ œ

œ
œ
œ
œ œ œ

œ
œ œ œ œ œ

œ
œ œ œ

œ
œ
œ
œ œ œ œ œ

œ
œ
œ
œ œ œ œ œ

œ

˙

˙
‰ ≈

œ
œ
œ
œ

œ
œ
œ
œ ™

™
™
™ œ

œ
œ
œ

w
w
w
wn

n
œ
œ
œ
n

J
‰

œ
œ
œ

‰ ≈

œ
œ
œ
b

œ
œ
œb

b

™
™
™

œ
œ
œ

œ
œ
œ

œ

œ ≈
œ
œ
œ

‰ ≈
œ
œ
œ

œ
œ
œ ™

™
™ œ

œ
œ

œ
œ
œ œ

œ
œ
œ œ

œ œ œ
œ
œ œ œ

œ
œ

œ#
œ œ

œ œ œ
œ
œ
œ
œ œ

œ œ œ
œ

œn

œn
œ
œ
œ
œ
œ
œ

œb

œb
œb
œ
œb
œ
œ
œ

œn

œn
œ
œ
œ
œ
œ
œ

œb

œb
œ
œ
œ
œ
œ
œ

˙
˙

˙

n

n ™
™
™

œ

œ
œ

™
™
™

œ

œb

b
˙
œ

œ

œ

œ

Ó Ó ‰ ≈

œ

œ

œ

œ ™

™ œ

œ

œ

œ
œ œn

œb œ œn œ#
œ œ œn œ#

œ œ
œb œ œn œ#

œ œ
œb œ œ œn œb œn œn œn œ œn œn

œn œ
œ
œ œ

œ
œ
œ œ

œ œ œ
œ
œ œ œ

œ
œ
œ
œ œ

œ œ œ
œ
œ
œ
œ œ

œ œ œ
œ

˙

˙
‰ ≈

œ
œ
œ
œ

œ
œ
œ
œ ™

™
™
™ œ

œ
œ
œ

˙
˙
˙
˙

œ
œ
œ
œ
J

≈

œ

œ

œ

œ ™

™ œ

œ

˙

˙
‰ ≈

œ
œ
œ
œ

œ
œ
œ
œ ™

™
™
™ œ

œ
œ
œ

w
ww
wn

n

œ
œ
œ œ œ

œ
œ œ œ œ œ

œ
œ œ œ

œ
œ
œ
œ œ œ œ œ

œ
œ
œ
œ œ œ œ œ

œ
œ
œ
œ œ œ

œ
œ œ œ œ œ

œ
œ œ œ

œ
œ
œ
œ œ œ œ œ

œ
œ
œ
œ œ œ œ œ

œ

œ
œ
œ ™

™
™ œ

œ
œ

œ
œ

œ

œ
œ

œn

n

J

œ
œ

œ

J

œœ
œ
œ

b œœ

œ#

œ
œ

œ

œ
œ
œ

œ
œ
œn

n ˙
˙
˙
˙

œ
œ
œ
œ

œ
œœ

œ ™ œn œ
œ
œ

J
‰ Œ Ó

œ

œ œb œ

œ

œ œ œ
œ
œ œ œ

œ

œ œ œ
œn
œ œn œ

œ

œ œ œ
œ
œ

œ

œ
œb
œ

œ

œ
œ
œ
œ
œ
œ
œ

œn ™
œ œ

œ
œ
œn œ œb

œ
œ

œ

r
œb œ œb œ œn œb œ œn

œ œ œ œ#
œ œ œ

(c) Score representation. Edited by Michael Kravchuk and published in the Public Domain.
Instrument (1) instrument piano

Meter (4) 4/4 time 4/4 time 4/4 time 4/4 time

Tempo (1) tempo 160

Key (1) Cm

Rhythm (8) 2 8. 16 2 8. 16

Pitches (8) [Cb4, D5, F5, G5, Cb5] [Ab4, Eb5, F5, Ab5] [G4, G5] [D5, F5, G5, D6] [Ab4, Eb5, F5, Ab5] [G4, G5]

Loudness (1) loudness f

St
re

am
 1

Instrument (1) instrument piano

Meter (5) 4/4 time 4/4 time 4/4 time4/4 time 4/4 time

Tempo (1) tempo 160

Key (1) Cm

Rhythm (63) _8 16

Pitches (63) Ab4 G4 F4 D4 Eb4 D4 Cb3 G3 Ab3 G3 F3 D3 Eb3 D3 Cb2 G2 Ab2 G2 F2 D2 Eb2 D2 C2 G1 C2 G1 C2 G1 C2 G1 Cb1 Ab4 G4 F4 D4 Eb4 D4 Cb3 G3 Ab3 G3 F3 D3 Eb3 D3 Cb2 G2 Ab2 G2 F2 D2 Eb2 D2 C2 G1 C2 G1 C2 G1 C2 G1

Loudness (2) loudness f

St
re

am
 2

Time (Measures) 1 2 3 4

Time (Absolute) 0 1 2 3

(d) Context layer model representation

Figure 5.7: Three representations of Frédéric Chopin, Étude Op. 10, No. 12 in C minor (Revolutionary Étude), mm. 1–4

157

http://michaelkravchuk.com/free-piano-sheet-music-chopin-revolutionary-etude-op-10-no-12/

CHAPTER 5. MODEL TRANSFORMATIONS

5.5 Transforming MIDI Files to Context Layer

Models

The conversion from MIDI files to context layer models is illustrated with the first
four measures of Frédéric Chopin’s Étude Op. 10, No. 12 in C minor (Revolutionary
Étude) as example (see Figure 5.7). Apart from correlating note on and note off
events and interpreting these as notes, the algorithm also evaluates relevant meta
events, such as time signatures, tempo specifications, key signatures and lyrics (see
Chapter 2.1.1). As already mentioned in section 2.1.1, pitches are represented in
terms of integer notes in MIDI, corresponding to semitone keys on the piano key-
board. However, enharmonic spellings can not be encoded with this representation.
For example, it can not be distinguished between the note F] and G[. MPS lever-
ages key signature meta information for making suitable enharmonic decisions. This
succeeds in the majority of cases. However, correct decisions can not be assured in
the case of harmonic modulations which are not explicitly encoded in the MIDI file.
As an example, refer to the first chord in the right hand in Figure 5.7c, which can
be interpreted as a G7 chord. In the MIDI representation, the exact spelling of
the note B is discarded, only the corresponding integer note numbers are stored.
MPS interprets these notes as C[, since in the available harmonic context (the key
C minor) B is not a feasible spelling option.
In conclusion, the resulting context layer model contains all information derivable
from the data and metadata in the input MIDI file, which is only entirely “correct”
if the relevant context information is properly encoded in the input file. Because
some information can not be encoded at all in MIDI files, MPS additionally supports
processing MusicXML files. The corresponding transformations are described in the
following section.

5.6 Transforming MusicXML Files to Context

Layer Models

As already outlined in section 2.1.7, MusicXML is a music representation format
which includes not only exact specifications of musical parameters, but also notation-
specific information. In the conversion process from MusicXML to MPS context
layer models, all represented information have to be combined appropriately. This
is not always trivial, because sometimes required information is not available in the
current context in the document, but has to be combined with other data located
somewhere else in the MusicXML file.

158

CHAPTER 5. MODEL TRANSFORMATIONS

The MusicXML code of J. S. Bach’s Sinfonia 1, BWV 787, mm. 1–2, which is used
subsequently as an example, is attached to this document in Appendix B.2. The
first step in the transformation process is parsing the model into an in-memory
object representation. This is accomplished with the library ProxyMusic3. The
transformation algorithm subsequently traverses the object structure. After reading
meta data (such as title and composer), the part-list is processed (see lines 52–67 in
Appendix B.2).
For each voice contained in the MusicXML file, a separate stream is created in the
resulting context layer model. The example file contains only one part (beginning
in line 68) containing two measures (at lines 69 and 384, respectively). The notes
and rests contained in the measures have individual <voice> elements, which makes
it possible to encode multiple voices in one part explicitly. In the demonstrated
example, the three composed voices of Sinfonia 1 are encoded as follows:

• The upper voice is encoded as voice 1 (e.g. line 114)

• Voice number 2 was assigned to the middle voice (e.g. line 447)

• The lower voice has number 5 (e.g. line 312)

This results in three individual streams in the context layer model, as shown in
Figure 5.8. If a voice contains simultaneously sounding notes with different dura-
tions, these are automatically extracted to further individual streams. For instance,
this is required for some drum and percussion instrument parts, in which multiple
instruments are frequently notated in one part.
The transformation algorithm also evaluates time signatures (e.g. line 87), key
signatures (e.g. line 84), harmonic progressions and lyrics in MusicXML files. The
unfolding of repeats was also implemented in the MusicXML transformation process,
and can be activated or deactivated using a configuration flag.

5.7 Deriving and Compressing Context Tree

Composition Models

Deriving context tree representations from time-based context layer model represen-
tations is implemented in the form of a compression algorithm, which aims to create
a compact tree representation of the input model. In other words, the number of
tree nodes required to represent a composition is minimized. By definition, when
expanding the resulting context tree model representation (the expansion process is

3
https://github.com/Audiveris/proxymusic

159

https://github.com/Audiveris/proxymusic

CHAPTER 5. MODEL TRANSFORMATIONS

Instrument (1) instrument piano

Meter (2) 4/4 time 4/4 time

Key (1) C

Harmony (1)

Harmonic Rhythm (1) _2!

Rhythm (19) _16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 2~ 4 4

Pitches (19) G4 A4 B4 C5 D5 E5 F5 G5 F5 G5 A5 F5 A5 G5 F5 E5 E5 F#5

Loudness (2) loudness mf

St
re

am
 2

Instrument (1) instrument piano

Meter (2) 4/4 time 4/4 time

Key (1) C

Harmony (1)

Harmonic Rhythm (1) _2!

Rhythm (14) 4 _8 8 8 8 8 8 4 _8 8 8 8 8 8

Pitches (14) C3 C4 B3 G3 A3 B3 C4 B3 A3 G3 A3 D3

Loudness (1) loudness mf

St
re

am
 3

Instrument (1) instrument piano

Meter (2) 4/4 time

Key (1) C

Harmony (2)

Harmonic Rhythm (2) _1 _1

Rhythm (19) _16 16 16 16 16 16 16 16 16 16 323216 16 16 323216

Pitches (19) C4 D4 E4 F4 G4 A4 B4 C5 B4 C5B4D5 C5 E5 E5D5C5

Loudness (2) loudness mf

St
re

am
 4

Time (Measures) 1 2

Time (Absolute) 0 1

Figure 5.8: Context layer model of J. S. Bach, Sinfonia 1, BWV 787, mm. 1–2, resulting
from the MusicXML code in Appendix B.2

explained in section 5.2), the result must be equivalent to the original input. Thus,
the proposed algorithm applies lossless compression to musical context tree models
(Hankerson et al. 2003, p. 119).

5.7.1 Related Work

Some aspects of the proposed algorithm are reminiscent of Huffman coding, a lossless
compression method using tree structures for constructing codes for arbitrary input
sequences (Salomon 2007, pp. 74ff.). The aim of Huffman encoding usually is to
encode symbols occurring with high relative frequencies (i.e. probabilities) with
short binary sequences, whereas low probability input symbols are encoded with
longer codes. Figure 5.9 illustrates the construction of a code for the input sequence
abcabcadae. The symbol probabilities are: P (a) = 0.4, P (b) = 0.2, P (c) = 0.2,
P (d) = 0.1 and P (e) = 0.1.
However, there are a number of differences between Huffman coding and the pro-
posed compression method:

160

CHAPTER 5. MODEL TRANSFORMATIONS

a

b

c

d e

0

10

111

1101 1100

root

0
P = 0.4

1

1
P = 0.6

0
P = 0.2

0.4

1
P = 0.4

1
P = 0.2

0.2

0
P = 0.2

1
P = 0.1

0
P = 0.1

Figure 5.9: Huffman coding tree illustrating the construction of a possible code for the
input sequence abcabcadae. The resulting binary encoding is: a b= 0, b b= 10, c b= 111, d
b= 1101, e b= 1100

161

CHAPTER 5. MODEL TRANSFORMATIONS

• The input data is not a sequence of symbols, but a tree model

• The output is not a binary sequence, but an optimized tree

• Huffman coding typically utilizes binary or ternary trees (Salomon 2007, pp. 82ff.),
context tree models can have arbitrary tree shapes

• Context tree models support distinct mechanisms for internal redundancy op-
timization such as inheritance (see Chapter 4.4.2), polymorphism (see Chapter
4.4.3) auto expansion (see section 4.4.4) and fragments (Chapter 4.4.5).

• In context tree models, the child node orders can affect the semantics of the
resulting music, which has to be taken into account when compressing the tree
model

More details on Huffman coding similarities and differences can be found in the
following section.

5.7.2 Compression Algorithm

The model deriving and compression process is divided into five phases:

1. Segmentation of the input context layer model

2. Context tree conversion of the segmented parts

3. Optimizations using auto expansion

4. Optimizations using inheritance

5. Optimizations using control structures and fragment extractions

To illustrate the model compressing process, the first eight measures of Piano Sonata
No. 21 in C major, Op. 53 known as Waldstein by Ludwig van Beethoven are used
as an example. The score is shown in Figure 5.10.

Segmentation Phase

In the segmentation phase, each stream (or voice) in the given context stream model
is divided into n sections. The default behaviour is to segment the stream measure-
wise. Using a configuration parameter, the segmentation granularity can be adjusted
to multiples of measure lengths (e.g. 1

2
, 1

4
or 2 times the measure length). A possible

future enhancement for the algorithm is to determine the optimal segmentation size
automatically.

162

CHAPTER 5. MODEL TRANSFORMATIONS

Figure 5.10: Ludwig van Beethoven, Piano Sonata No. 21 in C major, Op. 53 (“Waldstein”),
mm. 1–8

In a second segmentation process, repetitive sequences of time signatures, instru-
ments, keys, rhythms, pitches and lyric syllables are identified. If applicable, rhyth-
mic sequences and pitch sequences are divided in such a way that as many sequences
as possible contain identical pitches and rhythms. In a later stage, these redundant
sequences are eliminated by using a custom type of Run-Length Encoding (RLE)
(Salomon 2007, pp. 22ff.).

Tree Conversion

Each segmented part is translated to a corresponding tree representation. A straight-
forward approach for this translation is creating corresponding tree nodes for each
context layer. The resulting redundant subtrees are inserted in the created context
tree model below a parallelization control structure, which represents individual
voices in the composition. For illustration, a redundant context tree model is shown
in Figure 5.11.

163

composition parallelization

voice0

voice1

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

instrument piano key C rhythm _8

instrument piano key C rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 pitches [C3, E3] [C3, E3] [C3, E3] [C3, E3] [C3, E3] [C3, E3] [C3, E3] [C3, E3] [C3, E3] [C3, E3] [C3, E3] [C3, E3] [C3, E3]

instrument piano key C rhythm 8 8 pitches [D3, F#3] [D3, F#3]

instrument piano key C rhythm 4. 16 16 8 _8 _4 4~ 16 16 16 16 4 _4 pitches [D3, G3] B3 A3 G3 D6 D6 C6 B5 A5 G5

instrument piano key C rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 pitches [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3] [Bb2, D3]

instrument piano key C rhythm 8 8 pitches [C3, E3] [C3, E3]

instrument piano key C rhythm 4. 16 16 8 _8 _4 4~ 16 16 16 16 4 _4 pitches [C3, F3] A3 G3 F3 C6 C6 Bb5 Ab5 G5 F5

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

instrument piano key C rhythm 8 pitches C2

instrument piano key C rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 pitches [C2, G2] [C2, G2] [C2, G2] [C2, G2] [C2, G2] [C2, G2] [C2, G2] [C2, G2] [C2, G2] [C2, G2] [C2, G2] [C2, G2] [C2, G2]

instrument piano key C rhythm 8 8 pitches [C2, A2] [C2, A2]

instrument piano key C rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 pitches [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2] [B1, G2]

instrument piano key C rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 pitches [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2] [Bb1, F2]

instrument piano key C rhythm 8 8 pitches [Bb1, G2] [Bb1, G2]

instrument piano key C rhythm 8 8 8 8 8 8 8 8 pitches [A1, F2] [A1, F2] [A1, F2] [A1, F2] [A1, F2] [A1, F2] [A1, F2] [A1, F2]

instrument piano key C rhythm 8 8 8 8 8 8 8 8 pitches [Ab1, F2] [Ab1, F2] [Ab1, F2] [Ab1, F2] [Ab1, F2] [Ab1, F2] [Ab1, F2] [Ab1, F2]

Figure 5.11: Redundant context tree model of Ludwig van Beethoven, Piano Sonata No. 21 in C major, Op. 53 (“Waldstein”), mm. 1–8

164

CHAPTER 5. MODEL TRANSFORMATIONS

Auto Expansion Optimization

The first optimization phase leverages the functionality of auto expansion, which was
explained in Chapter 4.4.4. In the example, repetitive pitch sequences are reduced
to sequences with only one item. After the first phase, the model looks as shown in
Figure 5.13. In comparison to the state in Figure 5.11, redundant information was
removed at nodes l, m, o, r, s, t, u, v, w and x.

Inheritance Optimization

In the next step, the hierarchical model structure is utilized for inheritance-based
optimizations (see Chapter 4.4.2). In particular, the aggregated node constellations
at the leaf nodes of the tree are analyzed and common nodes are identified. For this
purpose, the tree nodes are represented in a matrix, which is illustrated in Figure
5.12.

a a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b

c c c c c c c c c c c c c c c

d e f g h f g i e f j h f k k

l m n o l p q r s t u v w x

f0 f2

f3

f4f1

Figure 5.12: Node matrix used for computing the hierarchical tree arrangement of the
compressed model. Refer to Figure 5.13 for a visualization of the nodes a to x. The nodes
a, b and c are combined to three single nodes and arranged as common parent nodes in
the tree, as shown in Figure 5.14. This graphic also illustrates the extraction of fragments,
the result of which can be seen in Figure 5.15.

For each node in the tree, successive equivalent nodes are identified and grouped.
The longer the group length, the more often a particular node is reused. Therefore,
the group lengths can be interpreted as indications for the hierarchy levels in the
compressed tree. The higher the number, the higher is the hierarchy level in the
resulting tree, and the higher is the degree of inheritance optimization. The analysis

165

composition parallelization

voice0

voice1

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

instrument piano key C rhythm _8

instrument piano key C rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 pitches [C3, E3]

instrument piano key C rhythm 8 8 pitches [D3, F#3]

instrument piano key C rhythm 4. 16 16 8 _8 _4 4~ 16 16 16 16 4 _4 pitches [D3, G3] B3 A3 G3 D6 D6 C6 B5 A5 G5

instrument piano key C rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 pitches [Bb2, D3]

instrument piano key C rhythm 8 8 pitches [C3, E3]

instrument piano key C rhythm 4. 16 16 8 _8 _4 4~ 16 16 16 16 4 _4 pitches [C3, F3] A3 G3 F3 C6 C6 Bb5 Ab5 G5 F5

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

4/4 time

instrument piano key C rhythm 8 pitches C2

instrument piano key C rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 pitches [C2, G2]

instrument piano key C rhythm 8 8 pitches [C2, A2]

instrument piano key C rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 pitches [B1, G2]

instrument piano key C rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 pitches [Bb1, F2]

instrument piano key C rhythm 8 8 pitches [Bb1, G2]

instrument piano key C rhythm 8 8 8 8 8 8 8 8 pitches [A1, F2]

instrument piano key C rhythm 8 8 8 8 8 8 8 8 pitches [Ab1, F2]

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

d

e (13 eighth notes)

f
g

h (14 eighth notes)

f

g

i

f
j (16 eighth notes)

f

k (8 eighth notes)

l

m

n

o

l

p

q

r

s

t

u

v

w

x

e (13 eighth notes)

h (14 eighth notes)

k (8 eighth notes)

Figure 5.13: Context tree model of Ludwig van Beethoven, Piano Sonata No. 21 in C major, Op. 53 (“Waldstein”), mm. 1–8, after applying auto
expansion optimizations. This results to the removal of redundant information at nodes l, m, o, r, s, t, u, v, w and x.

166

CHAPTER 5. MODEL TRANSFORMATIONS

of distinct node occurrence counts and the positioning of often occurring nodes near
the top of trees is an analogy to Huffman coding. However, an essential difference
is that in this step only consecutive nodes are taken into account. This is required
to retain the temporal semantics of the composition model. After the optimization,
the model is structured as shown in Figure 5.14.

Fragment Extraction Optimization

In the last optimization phase, redundant subtrees are identified and extracted (see
Chapter 4.4.5). This is repeated until no more optimizations are possible. This step
eliminates redundant information of non-consecutive node structures, which can not
be achieved using the previously described inheritance optimization. For instance,
the two rhythm nodes labeled k in Figure 5.13 can be combined to one node with the
two child nodes w and x. In contrast, consider the nodes labeled f in Figure 5.13.
These can not be combined to one node while preserving the temporal semantics of
the composition model, at least not in the common hierarchy level. Therefore, the
strategy of extracting fragments is applied, as introduced in Chapter 4.4.5. After
performing this last step, the composition model is redundancy-optimized as shown
in Figure 5.15.

5.7.3 Future Work

The current implementation performs model data compressions by identifying equiv-
alent nodes. A future enhancement for the algorithm to be considered is the detec-
tion of similar nodes, which could be eliminated by describing suitable modification
procedures, as explained in Chapter 4.6. By this means, composition models could
be reduced to essential musical information and the description of modification pro-
cesses applied throughout the composition, which conforms to the way most human
composers shape musical works.
Considering the presented example, the algorithm then should be able to detect the
pitch relationships of the first and second half of the excerpt, which is in essence
expressible as a transposition by two descending semitones. In addition, the highly
similar rhythmic structure of the second excerpt half could be represented in terms
of simple rhythmic insertions in the rhythms of the first half.
To summarize, the proposed algorithm is not only capable of transforming time-
based music representations to tree-based models, it also identifies redundant in-
formation and re-formulates models in such a way that information specified more
than once is extracted and reused in order to ensure a concise music representation.

167

composition instrument piano 4/4 time key C parallelization

voice0

voice1

rhythm _8

rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8

rhythm 8 8

rhythm 4. 16 16 8 _8 _4 4~ 16 16 16 16 4 _4

rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8

rhythm 8 8

rhythm 4. 16 16 8 _8 _4 4~ 16 16 16 16 4 _4

pitches [C3, E3]

pitches [D3, F#3]

pitches [D3, G3] B3 A3 G3 D6 D6 C6 B5 A5 G5

pitches [Bb2, D3]

pitches [C3, E3]

pitches [C3, F3] A3 G3 F3 C6 C6 Bb5 Ab5 G5 F5

rhythm 8

rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8

rhythm 8 8

rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8

rhythm 8 8

rhythm 8 8 8 8 8 8 8 8

pitches C2

pitches [C2, G2]

pitches [C2, A2]

pitches [B1, G2]

pitches [Bb1, F2]

pitches [Bb1, G2]

pitches [A1, F2]

pitches [Ab1, F2]

Figure 5.14: Context tree model of Ludwig van Beethoven, Piano Sonata No. 21 in C major, Op. 53 (“Waldstein”), mm. 1–8, after optimizing
the tree structure utilizing inheritance

168

composition instrument piano 4/4 time key C parallelization

voice0

voice1

rhythm _8

reference

reference

reference

reference

reference

reference

reference

fragment0

fragment1

pitches [D3, F#3]

fragment2

pitches [D3, G3] B3 A3 G3 D6 D6 C6 B5 A5 G5

fragment3

pitches [Bb2, D3]

fragment4

reference

pitches [C3, F3] A3 G3 F3 C6 C6 Bb5 Ab5 G5 F5

rhythm 8

reference

reference

rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

reference

reference

rhythm 8 8 8 8 8 8 8 8

pitches C2

pitches [C2, G2]

pitches [C2, A2]

pitches [B1, G2]

pitches [Bb1, F2]

pitches [Bb1, G2]

pitches [A1, F2]

pitches [Ab1, F2]

rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8

pitches [C3, E3]

rhythm 8 8

rhythm 4. 16 16 8 _8 _4 4~ 16 16 16 16 4 _4

rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Figure 5.15: Context tree model of Ludwig van Beethoven, Piano Sonata No. 21 in C major, Op. 53 (“Waldstein”), mm. 1–8, after extracting
fragments

169

CHAPTER 5. MODEL TRANSFORMATIONS

5.8 Graphical User Interface

All transformations introduced in this chapter can be conveniently invoked using
graphical user interfaces in MPS. Figure 5.16 shows the MPS toolbar, which is
located at the top of the user interface of the application (see Figure 1.2). The
toolbar provides buttons with which the user can invoke transformations with one
simple click.

Generate
Context Tree
Visualization

Generate
Context Layer
Visualization

Generate
Score

Derive /
Compress

Tree

Generate /
Execute

SuperCollider
Code

Context-
based
Music
Search

Music Analysis /
Generate Analysis

PDF Report

Figure 5.16: Toolbar of the graphical Music Processing Suite user interface. Available
actions are: generate context tree visualizations (see Chapter 4), generate context layer
model visualizations (see Chapter 3), generate scores (see Chapter 5.3), derive / compress
tree models (see Chapter 5.7), context-based music search (will be introduced in Chapter
6) and music analysis (which will be demonstrated in Chapter 7).

The results of the corresponding transformations are stored in files with a suitable
file name suffix. For example, refer to Figure 1.2, in which the current project
contains a composition language file named BeethovenSymphony5.mcl. Next to this
file, other files with the same base name are stored. Score-related files, specifically
the corresponding LilyPond, MIDI and PDF files, start with the file name prefix
BeethovenSymphony5_Score.*.

5.9 Summary

Transformation algorithms which enable the conversion between selected symbolic
music representation formats have been introduced. MPS gains flexibility by being
capable of representing music both in time-dependent models and in a concise tree
representations. The transformation infrastructure is capable of converting in both
directions: from time-based representations (including the symbolic music standard
formats MIDI and MusicXML) via context layer models to context tree models,
and vice versa. The capability of importing standardized symbolic music formats

170

CHAPTER 5. MODEL TRANSFORMATIONS

is an important feature of MPS, as musicians and researchers can build upon a
vast repertoire of existing material. The introduced representation forms have cer-
tain advantages for specific computational music processing applications, as will be
shown in the following chapters. Moreover, the conversions between context layer
models and context tree models are an integral part of the automated composition
algorithm, which will be introduced in Chapter 8.

171

Chapter 6

Context-based Corpus Search

Elwood: What kind of music do you
usually have here?
Claire: Oh, we got both kinds. We got
country and western.

— from the movie The Blues Brothers

In this chapter, another application of the context-based composition model is intro-
duced: searching for musical fragments in a corpus of pieces. Advanced techniques
for retrieving musical information in musical corpora are possible due to the model
design: since all available context information is accessible at any point of time
in the composition, search criteria can be specified that go beyond simple musical
sequences. The main focus in this chapter is on the advantages of the underlying
model, and not on the search algorithm itself, which is implemented in a straight-
forward fashion.

6.1 Motivation

The search for a musical phrase or fragment in a musical corpus can be performed in
many different ways. In most cases, the available material is scanned for a specific
musical sequence of notes and rests. As already discussed in the introduction of
Chapter 3, this methodology is not sufficient in all cases. The already presented
example is repeated in Figure 6.1 for convenience.

172

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH

42!!! "# $"Piano %"&

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 6.1: Ludwig van Beethoven, Symphony No. 5 in C Minor, Op. 67, Mv. I, motif

Depending on the application, it might be desirable to specify multiple search criteria
or to abstract the search query. Aspects to consider are, for instance:

1. Do we want to limit the search results to specific instruments?

2. Should the initial rest be taken into account for matching the rhythm?

3. Which time signatures are relevant? Only 2

4
time or other metric contexts as

well?

4. Is the temporal position of the rhythm in the respective measures relevant?

5. Do we search for the exact pitch sequence G-G-G-E[or for three equal pitches
in a row followed by a descending major third?

6. Should the pitch sequence be abstracted to scale degrees in order to find the
degree combination (namely 5-5-5-3, or zero-based 4-4-4-2) on other scales?

7. How important is the key context? Should the motif be located only in C
minor contexts or other keys as well?

8. Should the harmonic context consider the key only or also local harmonic
contexts (local keys, contextual harmonies)?

The previously mentioned variants are based on a selection of common musical
parameters or context layers. Since the model accommodates more context layers
as described in section 3.3, a large number of further abstractions and contextual
matching scenarios are possible.

6.2 Formulating Musical Search Queries

The formulation of musical search queries is easily possible with the domain-specific
composition language introduced in Chapter 4. Although the original purpose of
the language is to describe musical compositions, a given composition model is also
interpretable as a musical search query. For instance, if we only look for the rhythm
of Beethoven’s motif in a 2

4
metric context, we could simply express this search query

as:

173

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH
⌥ ⌅

1 composition
2 {
3 time 2/4, rhythm _8 8 8 8 2
4 }⌃ ⇧

Listing 6.1: Syntactical representation of Beethoven’s 5th Symphony motif rhythm and
metric context, which can be interpreted as search query.

Queries can be formulated using arbitrary musical context combinations introduced
in chapters 3 and 4, including instruments, time signatures, rhythms, absolute
pitches, degree-based pitches, keys, harmonies and lyrics.

6.3 Search Methodology

The search for the queried musical fragment is performed at the context layer model
level. Particularly, the search query model is transformed into a context layer model
containing only the queried contexts, meaning that no default contexts will be used
(see Chapter 5.2). The query layer model will subsequently be matched against
layer model representations of all compositions in the corpus. An overview of this
concept is illustrated in Figure 6.2.

Search Engine

Context
Model

Compiler

Language
Parser

Context
Tree

Model

Context Layer
Models

MC2L Search
Query

MIDI Parser

MusicXML
Parser

 MIDI Files

MusicXML
Files

Legend

Files

Models

Components

Search Engine

Search
Results

Query
Context Layer

Model

Corpus

Figure 6.2: Overview of the context-based search infrastructure

174

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH

6.4 Search Query Context Layer Models

The first step performed by the algorithm is producing a context layer model rep-
resentation of the search query. This step is handled by the context tree model
compiler (see section 5.2) with a special configuration. It ensures that no default
context layers will be generated, resulting in a model containing only the types
of contexts specified in the search query. To illustrate, various search queries and
resulting context layer model representations are shown in Table 6.1.

6.5 Search Algorithm

The algorithm compares the query context layer model patterns resulting from the
transformation described in the previous section with context layer model represen-
tations of the corpus. Therefore, each input file is transformed to a context layer
model using suitable parsers and converters (for details, refer to sections 5.5 and 5.6).
Each corpus layer model is segmented into stream events using stream sequencers
(explained in section 3.6). The algorithm iterates through all stream events, com-
paring if a stream event matches the first query stream event in all aspects (i.e. all
context layers). If this is the case, the query stream events are iterated in parallel
to the corpus layer model and are compared layer by layer. If the query stream
iteration is finished without any discrepancy being detected, a match is registered.
The pseudocode of the algorithm is shown in Listing 6.2.
⌥ ⌅

1 searchResults = empty list
2 queryStreamModel = construct stream model for search query
3 queryStreamEvents = compute segmentation of queryStreamModel
4 inputFiles = scan corpus for MIDI , MusicXML and MC2L files
5 foreach input file
6 {
7 inputStreamModel = convert file to stream model
8 streamEvents = compute segmentation of inputStreamModel
9 foreach stream event in streamEvents

10 {
11 eventIndex = index of current stream event
12 foreach query stream event
13 {
14 if query stream event does not match event with eventIndex:
15 cancel comparison and continue at next stream event (outer loop)
16 else:
17 increment eventIndex
18 }
19 add result to searchResults
20 }
21 }
22 return searchResults⌃ ⇧

Listing 6.2: Context-based search algorithm

175

Table 6.1: Search queries and corresponding query stream model patterns

Description Query Syntax Query Context Layer Model

Search for the rhythm? ˇ “(ˇ “(ˇ “(˘ “ only.
rhythm _8 8 8 8 2

Rhythm (5) _8 8 8 8 2

Search for the explicit pitch
sequence G G G Eb only.

pitches G G G Eb
Pitches (4) G G G Eb

Search for the rhythm? ˇ “(ˇ “(ˇ “(˘ “ in combination with
the explicit pitch sequence
G G G Eb.

rhythm _8 8 8 8 2,

pitches G G G Eb

Rhythm (5) _8 8 8 8 2

Pitches (5) G4 G4 G4 Eb4

Search for the zero-based
degrees 4 4 4 2 in an arbi-
trary scale context.

pitches 4 4 4 2
Degrees (4) 4 4 4 2

Search for the zero-based
degrees 4 4 4 2 in a C minor
key context.

key Cm, pitches 4 4 4 2
Key (1) Cm

Degrees (4) 4 4 4 2

Search for the zero-based
degrees 4 4 4 2 in a C mi-
nor key context with the
rhythm ? ˇ “(ˇ “(ˇ “(˘ “.

key Cm, rhythm _8 8 8 8

2, pitches 4 4 4 2

Key (1) Cm

Rhythm (5) _8 8 8 8 2

Degrees (5) 4 4 4 2

176

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH

6.6 Search Result Presentation

Match results are displayed in a separate view in the graphical user interface of
MPS. An example is presented in Figure 6.3.

Figure 6.3: Search result presentation in the graphical user interface. The screenshot
shows results for the rhythm of Beethoven’s 5th Symphony motif in songs by the Beatles.
Results are grouped by source file. The following items are displayed for each search result:
resource path, zero-based stream number, measures, beats and absolute time.

The results are hierarchically presented in a table and grouped by source file. Each
search result displays the workspace-relative source file path, the zero-based stream
number in which the result was found, the measure number, the beat (i.e. the zero-
based start time in the corresponding measure) and the absolute time, expressed in
terms of a fraction (see section 3.4 for details).

6.7 Results

The following search results were produced by evaluating selected search queries
presented in section 6.4 against a corpus of 1122 MusicXML files containing pieces
by the following composers or musical styles, respectively:

• Johann Sebastian Bach (545 pieces)

• The Beatles (36 pieces)

• Ludwig van Beethoven (163 pieces)

• Johannes Brahms (40 pieces)

• Frédéric Chopin (101 pieces)

• Claude Debussy (20 pieces)

• Jazz Standards (24 pieces)

177

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH

• Scott Joplin (18 pieces)

• Wolfgang Amadeus Mozart (66 pieces)

• Franz Schubert (51 pieces)

• Antonio Vivaldi (58 pieces)

The corpus was compiled from open internet sources and platforms providing Mu-
sicXML files. The platform on which most high-quality scores were found was mus-
escore.org. Basic quality and plausibility checks for the selected files were performed
by reviewing the duration of the pieces to sort out fragments and work in progress
files, assessing the overall notation quality and by listening to selected sections of
the pieces to assure a certain musical coherence and to avoid pitch discrepancies
for transposed instruments. Despite these efforts, it is impossible to guarantee that
each and every note in the corpus is correctly notated. A copy of the corpus is
provided on the accompanying CD, see Appendix A.

Rhythm Search Results

Querying the corpus for the rhythm ? ˇ “(ˇ “(ˇ “(˘ “ from Beethoven’s Symphony No. 5 in C
minor, Op. 67 motif produces matches in 83 pieces. A selection of matches is shown
in Table 6.2:

Table 6.2: Selected search results for the rhythm of Beethoven’s 5th Symphony motif

Composer
Work

Number Title

Measure(s)

Bach BWV 537 Fantasia and Fugue in C minor 92, 95,
137, 138

Bach BWV 540 Toccata and Fugue in F major 598

Bach BWV 848 The Well-Tempered Clavier Book I:
Fugue No. 3 in C] major

55

Bach BWV 858 The Well-Tempered Clavier Book I:
Fugue No. 13 in F] major

23

Continued on next page

178

https://musescore.org/
https://musescore.org/

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH

Table 6.2 – Continued from previous page

Composer
Work

Number Title

Measure(s)

Bach BWV 880 The Well-Tempered Clavier Book II:
Prelude No. 11 in F major

2, 4, 5, 7,
9, 12, 16,
18, 20, 21,
23, 25, 27,
29, 30, 34,
37, 46, 58,
60, 61, 68

Bach BWV 892 The Well-Tempered Clavier Book II:
Prelude No. 23 in B major

12, 23

Beatles A Hard Day’s Night 2

Beatles Here, There and Everywhere 25

Beatles You Won’t See Me 13

Joplin Augustan Club Waltz 100

Beethoven Op. 13 Piano Sonata No. 8 (“Pathétique”),
Movement III

79

Beethoven
Op. 14
No. 1

Piano Sonata No. 9 in E major,
Movement I

60, 83, 85,
87, 155

Beethoven Op. 21 Symphony No. 1, Movement IV 189

Beethoven
Op. 30
No. 2

Violin Sonata No. 7 in C minor 17, 147

Beethoven Op. 55 Symphony No. 3 (“Eroica”), Movement I 556

Beethoven Op. 55 Symphony No. 3 (“Eroica”), Movement IV 332

Beethoven Op. 60 Symphony No. 4, Movement II 34, 36, 89,
91

Beethoven Op. 60 Symphony No. 4, Movement IV 214

Schubert D. 547 An die Musik 20, 21, 40,
41

Schubert D. 530 An eine Quelle 21, 22, 23

Continued on next page

179

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH

Table 6.2 – Continued from previous page

Composer
Work

Number Title

Measure(s)

Schubert D. 930 Der Hochzeitsbraten 206, 367,
432

Debussy CD 82 Suite Bergamasque, Movement IV:
“Passepied”

110

Absolute Pitch Search Results

The pitch sequence G G G Eb is found in 20 pieces in the corpus. These are listed
in Table 6.3. The first movement of the 5th Symphony itself is excluded.

Table 6.3: Search results for the absolute pitch sequence of Beethoven’s 5th Symphony
motif

Composer
Work

Number Title

Measure(s)

Bach
BWV 14
No. 5

Chorale from Cantata Wär Gott nicht
mit uns diese Zeit

1, 5

Bach
BWV 93
No. 7

Chorale from Cantata Wer nur den lieben
Gott läßt walten

5

Bach BWV 345 Chorale Ich bin ja, Herr, in deiner Macht 13

Bach BWV 403 Chorale O Mensch, schau Jesum
Christum an

1

Beethoven
Op. 10
No. 2

Sonata No. 6, Movement III 37

Beethoven Op. 55 Symphony No. 3 (“Eroica”), Movement IV 80

Brahms Op. 36 String Sextet No. 2 in G major,
Movement I

4, 17, 53

Mozart
KV 427
No. 1

Kyrie from Great Mass in C minor 1, 86

Continued on next page

180

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH

Table 6.3 – Continued from previous page

Composer
Work

Number Title

Measure(s)

Mozart
KV 427
No. 18

Agnus Dei from Great Mass in C minor 1, 86

Mozart KV 458 String Quartet No. 17 in B-flat major
(“The Hunt”)

242, 250,
253

Mozart KV 563 Divertimento in E-flat major, Movement I 174

Schubert D. 955 Glaube, Hoffnung und Liebe 8, 76

Vivaldi RV 297 Concerto No. 4 in F minor (“L’inverno”),
Movement I

41

Vivaldi RV 578 Concerto for 2 Violins and Cello in G
minor, Movement I

7

Vivaldi RV 531 Concerto for 2 Cellos in G minor,
Movement I

61

Vivaldi RV 728 Aria “Sol da te, mio dolce amore” from
opera Orlando

22, 24, 37,
38, 40

Combined Rhythm and Pitch Search Results

A search for the rhythm ? ˇ “(ˇ “(ˇ “(˘ “ combined with the absolute pitch sequence G G G
Eb yields no results (except for the first movement of the 5th Symphony). The same
holds true if the initial rest is removed from the rhythmic part of the search query.
This indicates that no literal copy of the motif is contained in the corpus.

Combined Rhythm and Key Search Results

Searching for the rhythm ? ˇ “(ˇ “(ˇ “(˘ “ in the key context C minor surprisingly only pro-
duces search results in two pieces, which are shown in Table 6.4.

181

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH

Table 6.4: Search results for the rhythm of Beethoven’s 5th Symphony motif in the key C
minor

Composer
Work

Number Title

Measure(s)

Brahms
Op. 51
No. 1

String Quartet No. 1 in C minor,
Movement I

179, 180,
189, 190,
191, 229,
233

Brahms
Op. 51
No. 1

String Quartet No. 1 in C minor,
Movement IV

42, 43, 44,
45, 46, 48,
60, 64

Investigating the source of the problem reveals that nearly all MusicXML files in
the corpus do not make use of the appropriate encoding for minor key signatures.
Specifically, most pieces with C minor key signatures are encoded as follows:
⌥ ⌅

1 <key>
2 <fifths >-3</fifths >
3 </key>⌃ ⇧

Listing 6.3: Key specification in MusicXML without mode element

The correct way encoding a minor key would be the following:
⌥ ⌅

1 <key>
2 <fifths >-3</fifths >
3 <mode>minor </mode>
4 </key>⌃ ⇧

Listing 6.4: Key specification in MusicXML containing a mode element

The root of the problem is that most music notation applications provide the op-
tion to select the number of accidentals used (e.g. three flats), but do not provide
a selection whether the key is a major or minor key. Thus, the selected key sig-
natures are interpreted and stored as major keys. However, this issue is rooted in
inappropriately encoded score data, not in a deficiency in the search algorithm. Af-
ter adjusting the harmonic context to the parallel key E[major, more matches are
detected, which are listed in Table 6.5.

182

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH

Table 6.5: Search results for the rhythm of Beethoven’s 5th Symphony motif in the key E[
major

Composer
Work

Number Title

Measure(s)

Bach BWV 537 Fantasia and Fugue in C minor 92, 95,
137, 138

Beethoven
Op. 10
No. 1

Sonata No. 5, Movement III 55, 56

Beethoven Op. 13 Piano Sonata No. 8 (“Pathétique”),
Movement III

79

Beethoven
Op. 30
No. 2

Violin Sonata No. 7 in C minor 17, 147

Beethoven Op. 55 Symphony No. 3 (“Eroica”), Movement I 556

Beethoven Op. 55 Symphony No. 3 (“Eroica”), Movement IV 332

Beethoven Op. 60 Symphony No. 4, Movement II 34, 36, 89,
91

Brahms
Op. 51
No. 1

String Quartet No. 1 in C minor,
Movement I

35, 36, 45,
46, 47

Mozart
KV 427
No. 1

Kyrie from Great Mass in C minor 62

Mozart
KV 427
No. 18

Agnus Dei from Great Mass in C minor 62

Kern All The Things You Are, Big Band
Arrangement

63, 65

Sampson Stompin’ at the Savoy, Big Band
Arrangement

25

Degree-based Search Results

Searching for the zero-based degree sequence 4 4 4 2 in the corpus yields results
in 233 pieces. However, verifying the results reveals that most of them are false
positives. This is due to the incorrect encoding of minor keys in the MusicXML
files in the corpus, as pointed out in the previous section. The scale degrees 4 4

4 2 in the C minor context are interpreted as 2 2 2 0 in the E[major context,

183

CHAPTER 6. CONTEXT-BASED CORPUS SEARCH

resulting mostly in false positive matches. In order to make use of combinations of
degree- and key-related search queries, the specifications of minor keys would have
to be corrected in all 1122 pieces in the corpus. Afterwards, the full flexibility of
degree-dependent search queries could be used. The implementation and evaluation
of this procedure is open for future research.

6.8 Conclusion

The search infrastructure implemented in MPS provides possibilities to formulate
and perform context-dependent musical search queries in a user-provided corpus
of compositions. Instead of note sequences, combinations of musical aspects can
be specified and are translated to search patterns in individual musical context
layers. Each composition in the corpus is translated into a corresponding layer
representation (see Chapter 3), in which the pattern matching is performed.
The search was successfully applied for queries incorporating rhythms and absolute
pitch specifications. Queries including key contexts and pitch specifications relative
to keys only partially yielded correct results. However, this is not due to a malfunc-
tioning algorithm, but because of incorrect encodings of keys in the corpus source
files.
Since search criteria can be specified in each available musical context layer, a fine-
grained and application-specific search is possible, making MPS a powerful tool for
finding specific musical fragments in musical corpora. Future work could address
enhancements of the query language, e.g. by introducing boolean operators and
advanced options for more flexible search queries. Furthermore, the system could
be optimized with regard to performance by employing appropriate database and
indexing technologies as proposed in related literature (Sapp et al. 2004; Typke et al.
2005; Cuthbert, Ariza, Cabal-Ugaz, et al. 2011; Viro 2011; Sampaio et al. 2013).

184

Chapter 7

Music Analysis

There is two kinds of music, the good,
and the bad. I play the good kind.

— Louis Armstrong

The context-based models introduced in chapters 3 and 4 constitute an expedient
basis for music analysis applications. Large efforts are put into manually performed
music analysis in order to find out more about musical structures, patterns, parallel
developments, variations and harmonic relations and progressions, to name but a
few. Recently, the usage of computer programs was proven effective for a number
of these tasks (Cope 2009). An extensive music analysis framework was developed
as part of MPS, which facilitates statistical and musicological analysis.

7.1 Motivation

Several aspects have motivated the development of the MPS analysis tool:

1. The underlying context-based model allows developing new analysis methods
which benefit from the available context information. Not only explicit infor-
mation, but also implicit and contextual data can be taken into account and
relations between individual context layers can be explored.

2. Once certain analysis algorithms are developed, they can be applied not only
to one musical piece, but also easily to hundreds or thousands of pieces. This
way, the processing power of computers is leveraged and human research is
disburdened from laborious manual work.

185

CHAPTER 7. MUSIC ANALYSIS

3. The proposed system does not require the knowledge of programming skills.
Users only have to provide MIDI and/or MusicXML files. The system pro-
duces output files in Comma Separated Values (CSV) format which can be
opened with any regular spreadsheet application. Furthermore, MPS gener-
ates clearly arranged PDF analysis reports containing comprehensible data
tables and graphical plots of analysis results.

4. By interpreting musical analysis results, insights can be gained into charac-
teristic properties of individual pieces, composers and styles. By using the
processing capabilities of computers, statistical commonalities and distinctive
features of musical compositions can be explored.

5. The findings obtained from analysis results can be applied in the design of an
automated composition system, which is introduced in Chapter 8.

6. Experiments with the music21 framework (Cuthbert and Ariza 2010), con-
ducted in late 2015 prior to developing the analysis system, yielded that a)
local corpus access mechanisms were not properly implemented yet and b)
that the analysis of a large corpus with more than 1000 pieces took about
half a day. A more efficient implementation was required for the composition
algorithm developed in Chapter 8.

7.2 Analysis Scopes

To analyze musical compositions, one or more files containing symbolic music data in
MIDI or MusicXML format have to be provided. The analysis and export process
is configurable on the basis of different analysis scopes. Either a single piece, a
collection of pieces or a corpus of pieces can be analyzed, which is visualized in
Figure 7.1.
The first musical analysis scope to be introduced is the single piece scope. It is
used to gain insight into a specific musical composition by performing either global
analyses or voice-specific analyses. It is also possible to combine the aforementioned
analysis modes. Furthermore, musically meaningful sections can be specified in
order to perform section-wise analyses, which can also be combined with the other
analysis modes.
Collection analysis is suitable for comparing multiple musical pieces among each
other. For this purpose, analysis results are shown next to each other in combined
representations. Corpus analysis goes one more step further, allowing the compari-
son of multiple collections of compositions, e.g. folders containing multiple composi-

186

CHAPTER 7. MUSIC ANALYSIS

Single Composition Scope Composition Collection Scope Composition Corpus Scope

Composition
File

Composition
Files

Folder

Composition
Files

Folder

Composition
Files

Folder

Corpus

…

Example: MusicXML file
of a Bach Prelude

Example: MusicXML files
of Bach's Well-Tempered

Clavier

Example: Folder containing
folders for various composers
in turn containing a number of

pieces for each composer

Available modes for
in-depth analysis:
• Voice-specific analysis
• Section-wise analysis

Figure 7.1: Analysis scopes

tions of individual composers. Comparative analyses are explained in greater detail
in section 7.6.
To demonstrate these analysis techniques for the single piece scope, the first move-
ment of Ludwig van Beethoven’s Piano Sonata No. 14 in C# minor, commonly
known as Moonlight Sonata, is used as an example. The musical aspects and rela-
tions surveyed by the analysis process are explained and illustrated below.

7.3 Rhythmic Analysis

7.3.1 Note Duration Analysis

In order to get a first notion of the rhythmical characteristics of a piece, a note du-
ration analysis is performed. The result visualizes how often specific note durations
are used in a composition. Refer to Figure 7.2, which shows a histogram of note
durations used in Beethoven’s Piano Sonata No. 14 in C# minor, Mv. I. Rather than
visualizing absolute note duration counts, this figure shows the relative frequencies
of the note durations, i.e. percentages which add up to 1.

187

CHAPTER 7. MUSIC ANALYSIS

1

16

1

12

1

6

3

16

1

4

1

2

3

4
1 5

4
2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Note Duration

R
el

at
iv

e
F
re

qu
en

cy

Note Duration Distribution

Figure 7.2: Note duration distribution of Ludwig van Beethoven’s Piano Sonata No. 14 in
C# minor, Mv. 1. The distribution reveals that the composition is heavily based on eighth
triplets, which have a fractional duration of 1

12
and constitute about 80% of the notes in

the piece. About 7% of the notes are quarter notes and about 5% are half notes. Tied
notes longer than a whole note do only occur rarely.

7.3.2 Note Density Analysis

Another aspect regarding durations is the ratio between durations of notes and
rests in the piece. In MPS, this ratio is called Note Density. If the composition or a
stream (voice) contains notes exclusively, the note density is 100%. The more rests
are contained in a composition or voice, the lower the note density. The note density
⇢d can be computed by dividing the total duration of notes by the total duration of
notes and rests. Mathematically this is represented in Equation 7.1, where di is the
duration of a stream event with index i in a context layer model stream containing
N stream events (see section 3.6).

⇢d =

NP
i=0

8
<

:
di, if stream event represents a note

0, otherwise
NP
i=0

di

(7.1)

188

CHAPTER 7. MUSIC ANALYSIS

The note densities for the individual voices in the presented example are: 0.98
(arpeggi), 0.99 (bass accompaniment) and 0.65 (melody).

7.3.3 Beat Analysis

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

7

8

15

16
1

0

2 · 10�2

4 · 10�2

6 · 10�2

8 · 10�2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

Figure 7.3: Beat distribution visualizing the relative frequencies of note onset times relative
to the beginning of the respective measures in Beethoven’s Piano Sonata No. 14 in C#
minor, Mv. 1

When analyzing music rhythmically, it is very important to consider the metric
context of the notes. Two notes with the same duration can have fundamentally
different musical meanings when placed on two different beats, i.e. different points
of time in a measure. Figure 7.3 illustrates how the notes of the first movement of
the Moonlight Sonata are distributed over the measures.

189

CHAPTER 7. MUSIC ANALYSIS

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

7

8

15

16
1

1

16

1

8

1

4

1

2

1

2

4

Beat (Point of Time in Measure)

N
ot

e
D

u
ra

ti
on

Note Durations per Beat

Figure 7.4: Note duration distribution dependent on beats of Ludwig van Beethoven’s
Piano Sonata No. 14 in C# minor, Mv. 1. Note durations are additionally visualized by
means of colors, where blue corresponds to short durations and red to long durations.

7.3.4 Combined Note Duration and Beat Analysis

An even more meaningful representation of the analysis results can be obtained by
combining duration and beat analysis in one plot, as demonstrated in Figure 7.4.
It depicts a three-dimensional representation of the data visualizing triplets of note
durations, beats and their respective relative frequency. The latter is visualized by
the area of the corresponding circle, the radius of which is proportional to the the
square root of the relative frequency.

Voice-specific Note Duration and Beat Analysis

By narrowing down the analysis scope even more, more complex correlations can be
visualized. Figure 7.5 shows the relationship between note durations, beats, voices

190

CHAPTER 7. MUSIC ANALYSIS

and relative frequencies of combinations of the aforementioned elements. By means
of the resulting figure, rhythmical similarities and differences between individual
voices can be detected.

0 1

12

2

12

1

4

4

12

5

12

1

2

7

12

8

12

3

4

10

12

11

12

15

16

1

16

1

12

2

12

3

16

1

4

1

2

3

4

1

5

4

2

3

Figure 7.5: Voice-specific note duration distribution dependent on beats of Ludwig van
Beethoven’s Piano Sonata No. 14 in C# minor, Mv. 1

7.4 Pitch Analysis

The previous sections were concerned with rhythm analysis, thus far intentionally
omitting the pitch dimension. This section explicitly covers pitch-related analysis.

7.4.1 Piano Roll Representations

A piano roll representation provides a simple yet accurate overview over the pitches
used in a composition. It can be considered a very simple score containing only

191

CHAPTER 7. MUSIC ANALYSIS

simple pitch information dependent on time. Figure 7.6 depicts a piano roll rep-
resentation of the first movement of the Moonlight Sonata, in which absolute and
relative pitch maxima and mimima can easily be identified. Furthermore, piano
roll representations are useful for identifying repeating parts and sections of musical
pieces visually.

0 10 20 30 40 50 60 70

30

40

50

60

70

80

90

Time (Measures)

P
it

ch
(M

ID
I

N
ot

e)

Piano Roll Representation

Figure 7.6: Piano roll representation of Beethoven’s Piano Sonata No. 14 in C# minor,
Mv. 1

7.4.2 Pitch Distributions

Pitch distributions indicate how often specific pitches are used throughout a musical
piece. An example is depicted in Figure 7.7.

192

CHAPTER 7. MUSIC ANALYSIS

30 35 40 45 50 55 60 65 70 75 80
0

1

2

3

4

5

6

7

8

9

·10�2

Pitch (MIDI Note)

R
el

at
iv

e
F
re

qu
en

cy
Pitch Distribution

Figure 7.7: Pitch distribution of Beethoven’s Piano Sonata No. 14 in C# minor, Mv. 1

7.4.3 Interval Analysis

Not only is it relevant to analyze individual pitches in music, but also to analyze
combinations of pitches and their relations. Musically speaking, the distance be-
tween two pitches is referred to as an interval (Randel 2003, pp. 413ff.). Intervals
can be analyzed a) by examining consecutively audible pitches or b) by considering
simultaneously sounding pitches. Biles refers to intervals in case a) as horizontal
intervals and in case b) as vertical intervals (Biles 2007a). Both analysis techniques
are introduced in the following sections.

Horizontal Interval Analysis

This section covers the analysis of successive pitches in musical compositions, which
is visualized in Figure 7.8. When summarizing the counted interval leaps in a his-
togram as depicted in Figure 7.9, conclusions can be drawn about the pitch progres-

193

CHAPTER 7. MUSIC ANALYSIS

Sonata Facile Theme

W.A. Mozart! "#!!$% &Piano
!! !

Music engraving by LilyPond 2.18.2—www.lilypond.org

+4 +3 -8 +1 +2 -2

Figure 7.8: Analyzing interval leaps by computing semitone differences to the respective
preceding pitches. Example shows excerpt from Piano Sonata No. 16 in C major, K. 545
by W. A. Mozart

�12 �10 �8 �6 �4 �2 0 2 4 6 8 10
0

2 · 10�2

4 · 10�2

6 · 10�2

8 · 10�2

0.1

0.12

0.14

0.16

0.18

Interval Leap (in Semitones)

R
el

at
iv

e
F
re

qu
en

cy

Interval Leap Distribution

Figure 7.9: Interval leap distribution of Beethoven’s Piano Sonata No. 14 in C# minor,
Mv. 1. The most frequently used interval is an ascending minor third (+3 semitones),
followed by ascending perfect fourths (+5 semitones) and repeated pitches (interval leap
of 0 semitones).

194

CHAPTER 7. MUSIC ANALYSIS

sions in the corresponding composition. For example, Beethoven most frequently
uses ascending minor thirds and ascending perfect fourths in the first movement of
the Moonlight Sonata. Furthermore, about 10% of the pitches are repeated in direct
succession, corresponding to an interval leap of 0.
The analysis tool is also capable of generating plots illustrating the distribution of
interval leaps dependent on beats, as shown in Figure 7.10. The diagram reveals
that pitch repetitions and ascending minor seconds predominantly occur on the very
first beat of the measures and interval leaps of ascending minor thirds mostly occur
on the last triplet notes, respectively.

CHAPTER 7. MUSIC ANALYSIS

0 1

12

2

12

1

4

4

12

5

12

1

2

7

12

8

12

3

4

10

12

11

12

15

16

�10

�5

0

5

10

Beat (Point of Time in Measure)

In
te

rv
al

Le
ap

(in
Se

m
ito

ne
s)

Interval Leaps Dependent on Beat

Figure 7.10: Beat-dependent interval leap distribution of Ludwig van Beethoven’s Piano
Sonata No. 14 in C# minor, Mv. 1. The diagram reveals that pitch repetitions and
ascending minor seconds predominantly occur on the very first beat of the measures and
interval leaps of ascending minor thirds mostly occur on the last triplet notes, respectively.

David M. Hofmann: Music Processing Suite, preliminary version compiled on July 22, 2018 235

Figure 7.10: Beat-dependent interval leap distribution of Beethoven’s Piano Sonata No. 14
in C# minor, Mv. 1. Circle areas are proportional to the relative frequency of corresponding
pairs of beats and interval leaps. Furthermore, circles are colored dependent on relative
frequencies for better visual grouping, where blue corresponds to low percentages and red
to high percentages. The diagram reveals that pitch repetitions predominantly occur on
the very first beat of the measures (red circle). Interval leaps of ascending minor thirds
mostly occur on the last note of triplet groups (orange circles).

195

CHAPTER 7. MUSIC ANALYSIS

Vertical Interval Analysis

The combinations of simultaneously audible pitches in musical pieces play a major
role in music analysis, because they have a pivotal impact on the listener’s auditory
impression. Pitch constellations are especially important to determine consonance,
dissonance and harmony in musical compositions, which is explained in detail below.

7.4.4 Dissonance Analysis

Whenever one or multiple pieces sound concurrently, they produce a certain conso-
nance or dissonance. To a certain extent, the degree of consonance or dissonance
can be physically explained and mathematically computed. The level of dissonance
of two tones with individual fundamental frequencies f1 and f2 can be analyzed by
comparing the frequency ratio of f1 and f2. Figure 7.11 illustrates the dissonance
values of all semitone intervals within two octaves. The ratios can also be derived
from the string lengths required to produce two pitches with the given interval dis-
tance, and are also dependent on the tuning system used (Randel 2003, pp. 414ff.).
For example, a major ninth has a frequency ratio of 9 : 4. The dissonance for
this interval can be obtained by computing the Tenney Height or Tenney Harmonic
Distance, which is defined in Equation 7.2, where a and b are the numerator and
the denominator of a frequency ratio, respectively (M. M. Deza and E. Deza 2016,
p. 415).

HD(a, b) = log2(a · b) (7.2)

It follows that the dissonance of a major ninth is approximately 5.17, as shown in
Equation 7.3.

log2(9 · 4) = log2(36) ⇡ 5.17 (7.3)

In case of more than two notes sounding at the same time, all interval combinations
are taken into account. For example, in the D major chord (consisting of the pitches
D, F] and A) there are three interval combinations: D-F], F]-A and D-A. In general,
a chord consisting of n notes contains n·(n�1)

2
intervals pairs, as shown in Equation

7.4 (Neapolitan 2015, p. 96ff.).

✓
n

2

◆
=

n!

2! · (n � 2)!
=

2Y

j=1

n + 1 � j

j
=

n

1
· n � 1

2
=

n · (n � 1)

2
(7.4)

The dissonance value of n simultaneously sounding notes is defined as the average
dissonance of all interval combinations, the formula of which is given in Equation 7.5.

196

CHAPTER 7. MUSIC ANALYSIS

P
e
r
fe

c
t

U
n
is

o
n

(
1
:1

)

M
in

o
r

S
e
c
o
n
d

(
1
6
:1

5
)

M
a
jo

r
S
e
c
o
n
d

(
9
:8

)

M
in

o
r

T
h
ir

d
(
6
:5

)

M
a
jo

r
T

h
ir

d
(
5
:4

)

P
e
r
fe

c
t

F
o
u
r
t
h

(
4
:3

)

T
r
it

o
n
e

(
4
5
:3

2
)

P
e
r
fe

c
t

F
if
t
h

(
3
:2

)

M
in

o
r

S
ix

t
h

(
8
:5

)

M
a
jo

r
S
ix

t
h

(
5
:3

)

M
in

o
r

S
e
v
e
n
t
h

(
9
:5

)

M
a
jo

r
S
e
v
e
n
t
h

(
1
5
:8

)

P
e
r
fe

c
t

O
c
t
a
v
e

(
2
:1

)

M
in

o
r

N
in

t
h

(
3
2
:1

5
)

M
a
jo

r
N

in
t
h

(
9
:4

)

M
in

o
r

T
e
n
t
h

(
1
2
:5

)

M
a
jo

r
T
e
n
t
h

(
5
:2

)

P
e
r
fe

c
t

E
le

v
e
n
t
h

(
8
:3

)

A
u
g
m

e
n
t
e
d

E
le

v
e
n
t
h

(
4
5
:1

6
)

P
e
r
fe

c
t

T
w

e
lf
t
h

(
3
:1

)

M
in

o
r

T
h
ir

t
e
e
n
t
h

(
1
6
:5

)

M
a
jo

r
T

h
ir

t
e
e
n
t
h

(
1
0
:3

)

M
in

o
r

F
o
u
r
t
e
e
n
t
h

(
1
8
:5

)

M
a
jo

r
F
o
u
r
t
e
e
n
t
h

(
1
5
:4

)

D
o
u
b
le

O
c
t
a
v
e

(
4
:1

)

0

2

4

6

8

10

0.00

7.91

6.17

4.91

4.32

3.58

10.49

2.58

5.32

3.91

5.49

6.91

1.00

8.91

5.17

5.91

3.32

4.58

9.49

1.58

6.32

4.91

6.49

5.91

2.00

T
en

n
ey

H
ei

gh
t

(l
og

2
ab

)
Dissonance Values of Simultaneously Sounding Intervals Within Two Octaves

Figure 7.11: Dissonance values of simultaneously audible intervals within two octaves

The variables ak and bk designate the numerator and the denominator of the kth

interval frequency ratio, respectively.

1

n

nX

k=1

HD(ak, bk) =
1

n

nX

k=1

log2(ak · bk) (7.5)

Excursus: Relationship between Harmony and Polymetre

Pitches and rhythms are closely related to each other. The fundamental frequencies
of tones are physically described in terms of a frequency in Hertz (Goldstein 2013,
pp. 263-265). Oscillations, occurring a certain number of times per second, can also
be interpreted as a regular rhythm on a small time scale. Consider the two rhythms
in Figure 7.12, representing the proportions of three beats against two. If these
are played at rapid speed, two tones would be audible in the interval of a perfect
fifth. This interval is characterized by the frequency ratio 3 : 2, just as the rhythm
shown in Figure 7.12. It follows that pitches can be interpreted as rhythms on a
different time scale than conventional rhythms. Based on this observation, Barlow
has explored the relationships between harmony and polymetre (Barlow 2012, p. 47).

197

CHAPTER 7. MUSIC ANALYSIS

!

!

!

3

Snare

Snare

!"
4
2

!"
4
2

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 7.12: Rhythm representing the ratio 3 : 2. When played at very high speed the
interval of a perfect fifth, which has the same frequency ratio, is audible. Barlow therefore
proposed that harmony is a special case of polymetre (Barlow 2012, p. 47).

Dissonance Over Time

MPS analyzes each combination of simultaneously audible pitches in musical pieces,
resulting in a series of dissonance values over time. A graphical representation of
such a progression is shown in Figure 7.13. This representation allows to identify
positions with notably high consonance or dissonance in a piece.

7.4.5 Harmonic Analysis

A particularly important field in music analysis is harmonic analysis. It involves
deriving designations of chords being formed by simultaneously audible notes in
compositions. This is a task which can be handled conveniently by computers.
Based on the already introduced context layer model (see Chapter 3), the analysis
algorithm can access relevant harmonic context information in an individual layer,
if this information is contained in the corresponding input files. To this end, Mu-
sicXML supports the encoding of keys and local context harmonies. If no explicit
contextual harmony information is available, MPS attempts deriving the harmonies
from simultaneously audible pitches, which are referred to as implicit harmonies.

Harmony Distributions

The distributions of harmonies (either explicitly given or implicit harmonies) can be
visualized in histograms as shown in Figure 7.14. Note that the program does not
simply count the number of times a harmony is encountered, but takes the duration
of individual harmonic contexts into account when computing the histogram.

Beat-dependent Harmony Distributions

Another interesting question regarding harmonic analysis is the temporal distribu-
tion of harmony changes dependent on the time in the respective measures. In
Figure 7.15, the three-dimensional interrelations between harmony changes, beats
and relative quantities of harmony-beat pairs are illustrated.

198

CHAPTER 7. MUSIC ANALYSIS

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

0

1

2

3

4

5

6

7

8
E, C# and G in Measure 13

G# and D in Measure 39

B#, G# and F# in Measure 61

Single C# in Measure 68

Time (Measures)

D
iss

on
an

ce
(T

en
ne

y
H

ei
gh

t)

Figure 7.13: Dissonance plot of Beethoven’s Piano Sonata No. 14 in C# minor, Mv. 1.
Dissonance values are additionally visualized by means of colors, where blue corresponds
to consonant and red to dissonant. Local and global dissonance minima and maxima are
marked.

Harmony Compliance Analysis

Each note is analyzed in relation to its corresponding harmonic context. In particu-
lar, the ratio of harmony compliant notes ch is computed by dividing the number of
notes belonging to the context harmony by the total number of notes (see Equation
7.6). This value (between 0 and 1) provides information about how harmony be-
comes manifested in the notes being played. In the presented example, the harmony
compliance is 0.83.

199

CHAPTER 7. MUSIC ANALYSIS

A
m G

E
m D

B
m A

F
#
m E

C
#
m B

G
#
m

F
#

D
#
m

C
#

A
#
m

G
#

E
#
m

D
#

B
#
m

A
#

F
#
#
m

E
#

0

5 · 10�2

0.1

0.15

0.2

0.25

Context Harmony

R
el

at
iv

e
F
re

qu
en

cy
Context Harmony Distribution

Figure 7.14: Harmony distribution of Beethoven’s Piano Sonata No. 14 in C# minor,
Mv. 1. The x-axis is sorted according to the circle of fifths. Note that chords with the
same root note and kind are combined for clarity, e.g. C]m and C]m/B are both associated
with the C]m bin.

ch =

NP
i=0

8
<

:
1, if stream event contains pitch which belongs to context harmony

0, otherwise

NP
i=0

8
<

:
1, if stream event contains pitch

0, otherwise

(7.6)

Scale Compliance Analysis

The same concept introduced in the previous section is applied here to contextual
scales. The ratio of scale-compliant notes is determined both for the scale match-
ing the current key and for the scale matching the current context harmony (see

200

CHAPTER 7. MUSIC ANALYSIS

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

*
6Odf�O

6OOêf:O
*Oêf1

:df.
.Oêf�

*OK
.Oêf6O
1Oêf:O
"Oêf:O

�
"d

6OK
:Obmb9

.f6O
*OKf"

6OKf*O
"Oêf.O

*O
:f"
1f"
:Od

"
�Oê

*Obmb9
"df.O

1
6OOê

:Odf.O
:Odf"

1K
"Kf6O
*Oêf:

6O
1Kf"

.Oê
*OKf:O
:Odf"O

:O
"Oê
"K

�K�Ddf*O
*Odf1O

"2�i USQBMi Q7 hBK2 BM J2�bm`2V

*Q
Mi

2t
i>

�`
K

QM
v

*QMi2ti >�`KQMv .2T2M/2Mi QM "2�i

Figure 7.15: Beat-dependent harmony distribution of Beethoven’s Piano Sonata No. 14
in C# minor, Mv. 1. Circle areas are proportional to the relative frequencies of the cor-
responding beat-harmony pairs. Furthermore, circles are colored dependent on relative
frequencies for better visual grouping, where blue corresponds to low percentages and red
to high percentages. Most harmony changes happen on the very first beat of the measures,
C#m being the most frequently used chord. Fewer changes take place on the 3rd and 4th

quarter beat of the measures. Only very few changes are placed on the second quarter
beat. No harmony changes happen between quarter beats.

201

CHAPTER 7. MUSIC ANALYSIS

equations 7.7 and 7.8), yielding values between 0 and 1. High values indicate a very
strict adherence to tonality. Values are lower for more experimental and free music
styles such as jazz or progressive genres.

csk =

NP
i=0

8
>><

>>:

1, if stream event contains pitch which belongs
to scale corresponding to current key

0, otherwise

NP
i=0

8
<

:
1, if stream event contains pitch

0, otherwise

(7.7)

csh =

NP
i=0

8
>><

>>:

1, if stream event contains pitch which belongs to scale
corresponding to current harmony

0, otherwise

NP
i=0

8
<

:
1, if stream event contains pitch

0, otherwise

(7.8)

7.5 Progression Analysis

The MPS analysis tool also provides facilities to visualize musical progressions. Due
to the underlying layer-based model, progressions can be visualized for every avail-
able musical dimension. In this section, examples are demonstrated for harmonic
and lyric progressions. The system offers three modes to render progression graphs,
in which the edge labels have individual meanings:

• Occurrence count: displays how often a transition was detected

• Measure numbers: shows the measure numbers in which the corresponding
transition was detected

• Markov model: shows transition probabilities

7.5.1 Harmonic Progression Graphs

A beneficial representation for studying harmonic progressions in musical composi-
tions are harmonic progression graphs generated by MPS, as demonstrated in Figure
7.16. The graphs can also be rendered as Markov models, as already demonstrated in
section 2.3.3. An alternative projection of harmonic progression graphs on the circle
of fifths is presented in Figure 7.17. The harmonic progressions of Paul Desmond’s

202

C#m

C#m/B

2

G#7/B#

6,43,49,61

F#m

7,44

D#°/F#

27

D#°7/A

58

C#

51

D/F#

50

B#°7/G#

63,65

A

3

7,27,44,49,62

G/B

21

C#7/E#

24

E/B

8,45

B#°7/D#

2553,55

B7/D#

56

G#7/B

57

F##°7

27

G#sus4

58

3

D#°7/F#

41

B#°7

21

20,25

B7

8,45

D#°

57

G#7

28

F#m/C#

25

23,52,54,55

4,50

G#

41

C#m/G#

59

22

E#°7/G#

20

E

48,569,46

G#7/D#

48

Amaj7/C#

57

64,66

38

33

C#sus4

22

41

5,42,51,60

40

4,30

F##°7/G#

35

26

22 47 4857

Em

10

B

19

16,18

32

5934

4

17,19

G7/D

11

C#°7/E C#°7/G
13

F#

Bm

15

Bm/F#
1414

58

4

C
12

Em/B
12

A#°7
12

F#7/A#
12

15

13

13

Figure 7.16: Chord progression graph of Beethoven’s Piano Sonata No. 14 in C# minor, Mv. 1. The numbers specify the measures in which
the corresponding harmonic change was detected. The colors of the chords encode the consonance or dissonance of the relevant chord (green
corresponds to consonant and red to dissonant). The graph reveals which harmonic progressions are only used once and which are used multiple
times. The latter are easily identifiable due to comma-separated enumerations of measure numbers in which the corresponding transitions occur.

203

Ebm

Bm7
47

45

Cbmaj7

4

F7°

4

Bbm7

4 2

Ebm7

4

Abm7

4

Dbm7

4

Gbm7

2

Fm7 2

2

2

(a) Chord progression graph

Gb / Ebm

D / Bm

47

B / G#m
4

Db / Bbm
6

Ab / Fm

6

Eb / Cm

Bb / Gm

F / Dm

C / Am

G / Em

45

4

A / F#m

2

E / C#m2

2

4 4

(b) Circle of fifths projection of the chord progression graph. It provides
an intuitive way of assessing the harmonic complexity of a piece.

Figure 7.17: Harmonic progression graph of Paul Desmond’s Take Five projected onto the circle of fifths. Edge labels indicate the absolute
number of occurrences of the corresponding harmonic transition.

204

Yesterdayall

came

Suddenly

mytroubles

seemed

so

I'm

not

in

half

the

man

I

believe

Now

it

away

Oh

used

far

to

stay

looks
There's

a

shadow

hanging

be

as

over

me

though

they're

here

Figure 7.18: Graph visualizing lyric progressions of the first two verses in Yesterday by the Beatles

205

CHAPTER 7. MUSIC ANALYSIS

Take Five are used in this example. The circle of fifths projection is useful for
assessing the harmonic complexity of a piece visually.

7.5.2 Lyric Progression Graphs

To demonstrate the versatility of the progression graph generator for other context
layers, Figure 7.18 shows a graph of lyric progressions in Yesterday by the Beatles.

7.6 Comparative Analysis of Large Corpora

When studying musical compositions, new insights can also be gained by comparing
multiple pieces. Music Processing Suite allows to juxtapose collections and large
corpora of compositions.

7.6.1 Comparing Composition Collections

To demonstrate the analysis process and visualisations for multiple compositions,
all 24 preludes of Johann Sebastian Bach’s The Well-Tempered Clavier, Book I were
analyzed. Selected statistical plots are demonstrated and discussed.

Note Duration Distributions (Collection Scope)

Figure 7.19 contains the combined note duration distributions of all 24 preludes of
J. S. Bach’s The Well-Tempered Clavier, Book I. By identifying markers with unique
positions and a certain distance to other markers, exceptional preludes regarding
note durations can be identified. For example, the sixteenth triplet notes in preludes
6 and 15 are notated as regular sixteenth notes, as can be seen in Figure 7.20.

Key Distributions (Collection Scope)

An aggregated plot visualizing the notated keys used in the 24 preludes of the first
book of the Well-Tempered Clavier by J. S. Bach is presented in Figure 7.21. It
becomes apparent that not all keys are continuously used. Furthermore, the plot
reveals an asymmetry of keys with sharps and keys with flats (12 preludes with up
to 7 sharps, but only 10 preludes with up to 6 flats).

206

CHAPTER 7. MUSIC ANALYSIS

1

64

1

32

1

16

1

8

1

4

1

2
1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Note Duration

R
el

at
iv

e
F
re

qu
en

cy

Note Duration Distribution

Prelude01.xml

Prelude02.xml

Prelude03.xml

Prelude04.xml

Prelude05.xml

Prelude06.xml

Prelude07.xml

Prelude08.xml

Prelude09.xml

Prelude10.xml

Prelude11.xml

Prelude12.xml

Prelude13.xml

Prelude14.xml

Prelude15.xml

Prelude16.xml

Prelude17.xml

Prelude18.xml

Prelude19.xml

Prelude20.xml

Prelude21.xml

Prelude22.xml

Prelude23.xml

Prelude24.xml

Figure 7.19: Aggregated note duration distribution of the 24 preludes in Johann Sebastian
Bach’s The Well-Tempered Clavier, Book I. Prelude 2 in C minor is the rhythmically most
uniform piece containing about 92% 16th notes, followed by Prelude 21 with about 81%
32nd notes. The markers for Prelude 6 and 15 are quite interesting. These preludes contain
many 16th triplet notes, explaining why these markers are located between 16th and 32nd

notes. See Figure 7.20 for an excerpt showing the notation of the corresponding notes.

Figure 7.20: J. S. Bach, Prelude No. 15 in G Major, BWV 860, m. 1. The notes in the
right hand are notated as regular sixteenth notes but are actually sixteenth triplets.

207

CHAPTER 7. MUSIC ANALYSIS

A
b
m

G
b

E
b
m

D
b

B
b
m

A
b

F
m E
b

C
m B
b

G
m F

D
m C

A
m G

E
m D

B
m A

F
#

m E

C
#

m B

G
#

m

F
#

D
#

m

C
#

A
#

m

G
#

0.95

1

1.05

1.1

1.15

1.2

Key

R
el

at
iv

e
F
re

qu
en

cy
Key Distribution

Prelude01.xml

Prelude02.xml

Prelude03.xml

Prelude04.xml

Prelude05.xml

Prelude06.xml

Prelude07.xml

Prelude08.xml

Prelude09.xml

Prelude10.xml

Prelude11.xml

Prelude12.xml

Prelude13.xml

Prelude14.xml

Prelude15.xml

Prelude16.xml

Prelude17.xml

Prelude18.xml

Prelude19.xml

Prelude20.xml

Prelude21.xml

Prelude22.xml

Prelude23.xml

Prelude24.xml

Figure 7.21: Aggregated key distribution of the 24 preludes in Johann Sebastian Bach’s
The Well-Tempered Clavier, Book I. Not all keys are continuously covered by the preludes.
In particular, the keys D[major and D] minor were left out. Furthermore, there is an
asymmetry between preludes with sharps and preludes with flats: there are 12 preludes up
to 7 sharps but only 10 preludes up to 6 flats.

7.6.2 Analyzing Large Corpora

To conduct musical analyses in an even broader scope, large corpora of musical
works can be processed using MPS. A typical scenario would be to analyze a large
corpus containing selected works of various composers, styles and eras in order to
find similarities and differences. In the following examples, the corpus introduced in
Chapter 6 was analyzed. A copy of the corpus are available on the accompanying CD
(see Appendix A). The complete analysis of all 1,122 pieces in the corpus containing
99,700 measures, 7,271 separate voices and 2,067,580 notes, took about one and a
half hours.

Note Duration Distributions (Corpus Scope)

An aggregated note duration distribution for various composers is shown in Figure
7.22. It allows a comparison of note duration usage for the individual composers.

208

CHAPTER 7. MUSIC ANALYSIS

1

64

1

32

1

16

1

8

1

4

1

2
1

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

LQi2 .m`�iBQM

_2
H�

iBp
2

6`
2[

m2
M+

v
LQi2 .m`�iBQM .Bbi`B#miBQM

"�+?
"2�iH2b

"22i?Qp2M
"`�?Kb
*?QTBM

.2#mbbv
C�xx

CQTHBM
JQx�`i

a+?m#2`i
oBp�H/B

Figure 7.22: Aggregated note duration distributions analyzed from a large corpus contain-
ing compositions of various composers. Scott Joplin uses significantly more 16th notes than
the other analyzed composers. The most frequently used note durations are eighth notes,
which are consistently used in a relative quantity over 30% by all composers. J. S. Bach
uses most quarter notes of all composers in the corpus. Eighth and sixteenth triplets are
most frequently used by Chopin.

Beat Distributions (Corpus Scope)

In order to explore on which points of time in measures individual composers place
notes, an aggregated beat distribution as depicted in Figure 7.23 is generated.

Interval Leap Distributions (Corpus Scope)

A comparative visualization of horizontal interval leaps detected in the large corpus
is shown in Figure 7.24. It reveals differences in the composition of successive pitches,
especially in the middle and by the margins of the histogram.

209

CHAPTER 7. MUSIC ANALYSIS

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

7

8

15

16
1 9

8

5

4

11

8

0

5 · 10�2

0.1

0.15

0.2

0.25

"2�i USQBMi Q7 hBK2 BM J2�bm`2V

_2
H�

iBp
2

6`
2[

m2
M+

v

"2�i .Bbi`B#miBQM
"�+?

"2�iH2b
"22i?Qp2M

"`�?Kb
*?QTBM

.2#mbbv
C�xx

CQTHBM
JQx�`i

a+?m#2`i
oBp�H/B

Figure 7.23: Aggregated beat distributions analyzed from a large corpus containing com-
positions of various composers. Generally, the increasing use of syncopation is visible over
time, most notably when comparing Scott Joplin’s beat distribution to the ones of other
composers.

210

CHAPTER 7. MUSIC ANALYSIS

�15 �10 �5 0 5 10 15 20

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

AMi2`p�H G2�T UBM a2KBiQM2bV

_2
H�

iBp
2

6`
2[

m2
M+

v

AMi2`p�H G2�T .Bbi`B#miBQM
"�+?

"2�iH2b
"22i?Qp2M

"`�?Kb
*?QTBM

.2#mbbv
C�xx

CQTHBM
JQx�`i

a+?m#2`i
oBp�H/B

Figure 7.24: Aggregated interval leap distributions analyzed from a large corpus containing
compositions of various composers. Debussy is the only composer using large descending
interval leaps which are greater than an octave. The only composers using very high
ascending leaps are Chopin and Joplin. The interval leap distribution of J. S. Bach is
unique: He uses significantly less pitch repetitions (interval leap of 0) than the other
composers, but on the other hand uses more descending and ascending minor and major
seconds than his colleagues.

211

CHAPTER 7. MUSIC ANALYSIS

7.7 Conclusion

MPS provides extensive tools for music analysis, which can be applied in different
scopes. In-depth analyses for single pieces can be performed, as well as comparative
analyses of multiple pieces. No programming knowledge is required, but the analysis
procedure is invoked with the simple click of a button. Analysis report PDFs can
be generated automatically, which contain comprehensive statistical plots, graphs
and analysis data. Example analysis reports can be found on the accompanying CD
(see Appendix A). Future work could address further analysis algorithms and per-
formance optimizations. The analysis system provides an important foundation for
the automated composition algorithm, which is introduced in the following chapter.

212

Part III

Automated Composition

213

Chapter 8

Evolutionary Composition Algorithm

I was obliged to be industrious.
Whoever is equally industrious will
succeed equally well.

— Johann Sebastian Bach

This chapter is concerned with the design and implementation of an algorithm capa-
ble of generating musical material. It is built on the foundations of the context-based
models of musical compositions introduced in Chapters 3 and 4. Combined with the
proposed evolutionary algorithm, the system can be utilized for the following appli-
cations:

• Creating variations of existing compositions

• Recombining multiple compositions (composition crossover)

• Style imitations (i.e. imitating certain musical styles or composers)

• Generating compositions with predefined constraints (e.g. instruments or har-
monic progressions)

• Generating pieces with multiple sections with individual musical properties

8.1 Motivation

A number of automated composition approaches have been introduced in Chapter
2.3. The main motivation of the proposed system is to demonstrate that the musical
quality of automated composition systems does not only depend on the employed
algorithm, but also on the structure and complexity of the underlying music model.

214

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

The context-based models proposed in Chapters 3 and 4 are used as the foundation
of the automated composition system. Due to the ability to produce unexpected
and astonishing results while being relatively simple to retrace, EAs were selected
as the basic algorithmic method for the system. The GP approach, which uses
tree-based structures to represent solutions, is especially suited for the system: the
evolutionary process is adapted to operate on context tree composition models (see
Chapter 4). These are processed in an artificial evolutionary process, involving
continuous analysis, crossbreeding, mutation and recombination of pieces.

8.2 Composition vs. Improvisation

Composition is defined as “The activity or process of creating music, and the product
of such an activity. The term belongs to a large class of English nouns derived from
the participial stems of Latin verbs (here composit-, from componere: ‘put together’)
followed by the suffix -io/-ionem” (Sadie and Tyrrell 2001, p. 186).
Improvisation is a spontaneous form of composition happening in real time, and
is “considered by many as an extraordinary skill, a sort of magic” (Pachet 2012,
p. 119). In contrast, compositional processes in the primary sense include the re-
current refinement of the created musical material.

Both the creation and the interpretation of compositions in this restric-
tive sense are commonly distinguished from improvisation, in which de-
cisive aspects of composition occur during performance. The distinction
hinges on what performers are expected to do in various situations and
on how they prepare themselves to meet such expectations. (Sadie and
Tyrrell 2001, p. 186)

An essential characteristic of the designed system is that it is a composition system,
not an improvisation system, implying that the algorithm does not produce a com-
plete result in one iteration, but potentially modifies the generated results many
times before yielding a final result. This approach resembles a kind of creativity
which is based on trying out different possibilities and combinations:

The ‘hard work’ type of creativity often involves trying many different
combinations and choosing one over the others. It seems natural to
express this iterative task as a computer algorithm. The implementation
issues can be reduced to two components: how to understand one’s own
creative process well enough to reproduce it as an algorithm, and how
to program a computer to differentiate between ‘good’ and ‘bad’ music.
(Jacob 1996)

215

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

The two main issues addressed in the previous quote are discussed in the following
sections and possible solution approaches are elaborated.

8.3 Composition Algorithm

The GP-based algorithm and its implementation is described in depth in the follow-
ing sections.

8.3.1 Overview

A flow chart depicting the basic algorithm structure is shown in Figure 8.1.Evolutionary Compostion Algorithm

Initialization

Selection

Crossover

Mutation

Optimization
Criteria met?

Create compositions randomly or
initialize with existing compositions

Analyze compositions statistically and
compare with statistical target properties

Swap nodes or subtrees in composition
models

Random modifications in composition
models

Start

Evaluation

Select compositions for recombination

yes
End

no

Figure 8.1: Flowchart depicting the basic structure of the evolutionary composition algo-
rithm

The algorithm embodies a typical EA which was translated to the domain of music.
The genotypes used in the evolutionary process are musical compositions, which are
evaluated and modified according to the GP paradigm.
In the initialization phase, a set of initial compositions is created. Depending on the
algorithm application, the initial population is either formed from existing musical
material or generated randomly.

216

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

The evaluation process involves assigning ratings to each composition, which is ac-
complished by performing statistical analyses, which are introduced in detail in the
following section.
If the optimization criteria are met, the algorithm terminates and outputs the best-
rated compositions. Possible criteria are:

• The accumulated differences between the statistical distributions of a gener-
ated composition and the target distributions are below a specified threshold

• A configured maximum number of generations is exceeded

• The algorithm did not achieve improvements in terms of fitness for n genera-
tions

In case the optimization criteria are not met, the program produces a further gen-
eration of compositions. This is achieved by repeating the following procedure until
the next generation reaches the configured population size:

1. Select two compositions from the current generation using roulette wheel se-
lection (see section 2.3.7)

2. Create a new composition by performing a crossover between the two selected
compositions (see section 8.3.4)

3. Perform random modifications in the resulting composition as explained in
section 8.3.5

8.3.2 Fitness Function

A considerable challenge in the process of designing EAs is the specification of
suitable fitness functions. The purpose of fitness functions is assigning comparable
ratings to individuals in the population. The evaluation of individual solutions
is typically straight-forward in fields such as engineering, in which the quality of
solutions can be explicitly expressed mathematically. In the case of automated
music generation, the quantitative rating of music quality is a particularly difficult
task:

The range of theories regarding the bases of aesthetic value, judgement
and criticism is extraordinary, and the debates show no signs of near-term
resolution. This presents a problem for AI scientists wishing to produce
computational artists: How do we know when we’ve got one? How do we
know if version A is better than version B, or vice versa? Without the

217

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

ability to answer such questions the science of artist construction cannot
proceed, and these questions seem to be inseparably linked to the murky
issues of aesthetic judgement. (Spector and Alpern 1994, p. 3)

The approach proposed in this dissertation is to use statistical analysis as the vehicle
for composition evaluation. In particular, the statistical analyses introduced in
Chapter 7 are performed for each composition generated in the evolutionary process.
Each statistical distribution or feature, represented by a histogram or a real number
value, respectively, is compared with a set of target distributions and values, which
define the desired statistical properties of the composition to be generated. The
target distributions and values can either be chosen from previously analyzed musical
pieces (which effectively results in style imitations), or can in turn be generated
algorithmically according to mathematical rules. The assumption is that certain
statistical distributions of certain musical aspects and particular combinations of
these result in pleasant musical compositions.
The goal of the algorithm is to minimize the difference between the actual analyzed
statistical distributions and the desired target distributions. Consider the beat dis-
tributions in Figure 8.2 showing the relative frequency distributions of note onsets
relative to the beginning of corresponding measures. Mathematically, these distri-
butions can be considered as histograms of so called probability mass functions of
discrete random variables defined as X : S ! R, where S represents a set of all dis-
tinct observed symbols, each of which is assigned a probability (Pruim 2018, p. 57).
The probability is obtained by computing the relative frequency of each symbol,
i.e. the absolute number of occurrences of a symbol divided by the total number of
occurrences. Formally, the probability mass function is a function f : R ! [0, 1],
where f(x) = P (X = x); x 2 R. The probabilities sum up to 1 by definition, as
shown in Equation 8.1 (Pruim 2018, p. 57).

X

s2S

f(X(s)) = 1 (8.1)

The advantage of using relative frequencies rather than absolute occurrences is that
histograms can be compared efficiently, because the probabilities are normalized.
This would not be possible by comparing absolute numbers. The difference between
two discrete relative frequency histograms X : A ! R and Y : B ! R can be com-
puted as shown in Equation 8.4, i.e. by aggregating the absolute difference between
both histogram probabilities for the combined symbol set of both histograms. If an
element of the combined set is not present in one of the histograms, the probability
value in the respective histogram is zero. This is expressed in the functions g and h

shown in Equations 8.2 and 8.3.

218

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

7

8

15

16

0

2 · 10�2

4 · 10�2

6 · 10�2

8 · 10�2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

(a) Beat distribution histogram of Help! by the Beatles

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

7

8

15

16
1

0

2 · 10�2

4 · 10�2

6 · 10�2

8 · 10�2

0.1

0.12

0.14

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

(b) Beat distribution histogram of Ludwig van Beethoven’s Piano
Sonata No. 21 in C major (“Waldstein”), Op. 53, Mv. I

Figure 8.2: Comparison between two beat distribution histograms

219

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

g(s) =

8
<

:
f(X(s)) if s 2 A

0 otherwise
(8.2)

h(s) =

8
<

:
f(Y (s)) if s 2 B

0 otherwise
(8.3)

X

s2A[B

| g(s) � h(s) | (8.4)

The goal of the algorithm is to minimize the computed histogram differences to zero.
The computed value also serves as a scalar distance metric, enabling to compare
compositions to each other: the smaller the distance to the optimum value zero, the
better the rating of a composition in terms of fitness in the evolutionary process.

8.3.3 Multi-objective Optimization

The system was designed to support the optimization of multiple statistical aspects
of music simultaneously (Hofmann 2015). In EA jargon, this is called multi-objective
optimization. For example, not only rhythmic parameters are optimized during
the evolutionary process, but also pitch-related and harmony-related structures.
Technically, this is achieved by adding up the differences of all statistical comparisons
and minimizing the resulting sum. Furthermore, individual fitness functions can be
weighted, which makes it possible to specify the importance of the corresponding
musical aspects. Equation 8.5 indicates how multiple fitness functions fi can be
weighted with the coefficients wi and combined to a composite fitness function f

(Poli et al. 2008, p. 76).

f =
X

i

wifi (8.5)

In the following, the music-specific fitness functions implemented in MPS are ex-
plained in detail. These are divided into two categories: fitness functions optimizing
statistical feature values (shown in Table 8.1) and fitness functions optimizing sta-
tistical distributions (listed in Table 8.2).

Table 8.1: Fitness functions for statistical feature values

Fitness Function Description

Duration Optimizes the absolute duration of the piece.

Continued on next page

220

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Table 8.1 – Continued from previous page

Fitness Function Description

Number of Measures Optimizes the number of measures in the piece.

Number of Voices Optimizes the number of voices in the piece.

Number of Notes Optimizes the total number of notes in the piece.

Pitch Range Minimizes the number of notes which can not be
played by the used instruments.

Note density Optimizes the percentage of notes compared to the
total available duration.

Chord Compliance Optimizes the percentage of notes belonging to the
current harmony.

Scale Compliance
(Harmony)

Optimizes the percentage of notes belonging to the
current scale relative to the current harmony.

Scale Compliance
(Key)

Optimizes the percentage of notes belonging to the
current scale relative to the current key.

Root Compliance
(Harmony)

Optimizes the percentage of notes which represent the
root note of the current harmony.

Bass Note
Compliance
(Harmony)

Optimizes the percentage of notes which represent the
bass note of the current harmony. Note that the bass
not can be different from the root note of a harmony
(see section 4.5.8).

Harmonic progression
length

Optimizes the number of harmonies in harmonic
progressions.

Superfluous Elements Used to remove superfluous elements in generated
compositions, e.g. pitches for percussion instruments.

Tree Depth Optimizes the tree depth of the generated context tree
model representing the composition.

Table 8.2: Fitness functions for statistical distributions

Fitness Function Description

Note Duration Distribution Optimizes the distribution of note durations.

Rest Duration Distribution Optimizes the distribution of rest durations.

Time Signature
Distribution

Optimizes the distribution of time signatures
used in the composition.

Continued on next page

221

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Table 8.2 – Continued from previous page

Fitness Function Description

Beat Distribution Optimizes the distribution of note onset times in
the corresponding measures.

Dissonance Distribution Optimizes the distribution of dissonance values.
See section 7.4.4 for details.

Instrument Distribution Optimizes the distribution of instruments used in
the composition.

Simultaneous Interval
Distribution

Optimizes the distribution of simultaneously
played pitch intervals.

Interval Leap Distribution Optimizes the distribution of successive pitch
interval leaps.

Number of Simultaneous
Notes Distribution

Optimizes the distribution of the number of notes
being played simultaneously in the composition.

Circle of Fifths Distance
Distribution

Optimizes the distances according to the circle of
fifths of harmonic progressions.

8.3.4 Crossover Operators

As already explained in Chapter 2.3.7, the default crossover method used in GP
is subtree crossover. It can also be applied to context tree composition models.
However, subtree crossover in its basic form does not guarantee musically meaningful
results. For this reason, crossover operators tailored to context tree models were
developed for the proposed algorithm.
The first operator is called node type crossover. It analyzes which types of musical
contexts (e.g. rhythms, pitches, time signatures, harmonies) are available in the
two parent compositions. A random type is selected, and the candidates of the
selected type are filtered from both parents. After selecting the crossover points
in each parent compositions (by selecting a random candidate of the chosen type
in each parent), the node in the first composition is replaced by the node in the
second composition. The existing child nodes of the insertion point node are kept
in place during this operation. An example of a node type crossover of two musical
compositions in shown in Figure 8.3b, in which Beethoven’s Symphony 5 motif is
crossed with Steve Reich’s Clapping Music.
Another crossover operator is an extension of the previously introduced crossover
technique and is called node type and contained sequence crossover. It works as
follows: if the selected nodes contain musical sequences such as rhythms, pitches

222

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Genetic Programming Crossover

�����������

��� ����

��� ��

������ �� � � � �

������� � � � � ������� � � � �

�������� ��������� �

�����������

���� ����

����� ���

���������� ���������

������ � � � �� � � �� � �� � � ��

(a) Node crossover of rhythms illustrated using context tree models of Beethoven’s Sym-
phony 5 motif (left) and Steve Reich’s Clapping Music (right)

!"!" # $! # !" #!" # ! !! " # !"!"Piano !!% &&& 42 # ! ! !" # !#

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score resulting from the crossover shown above

Figure 8.3: Node crossover between Beethoven’s Symphony 5 motif and Steve Reich’s
Clapping Music. Corresponding files are available on the accompanying CD under
Composer/NodeCrossover (see Appendix A).

or harmonic progressions, then the sequences themselves are crossed by using a
one-point crossover technique, which was already illustrated in Chapter 2.3.7. This
operator effectively combines tree-based crossover from GP with sequence-based
crossover from GAs.

8.3.5 Mutation Operators

The biological equivalent to genetic mutations is imitated in evolutionary algorithms
through random modifications in chromosomes (see section 2.3.7). In the case of
context tree models, a number of model-specific mutations were implemented, which
are listed in Table 8.3.

223

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Table 8.3: Mutation operators

Operator Description

Add Rhythm Inserts a new rhythm.

Add Time Signature Inserts a new time signature.

Add Instrument Inserts a new instrument context.

Add Loudness Inserts a new loudness context.

Add Harmonic Progression Inserts a new harmonic progression.

Add Harmonic Rhythm Inserts a new harmonic rhythm.

Add Pitches Inserts a new pitch sequence.

Add Scale Inserts a new explicit scale context.

Add Key Inserts a new explicit key context.

Add Rhythm and Pitches Inserts a new rhythm combined with a new pitch
sequence.

Add Fragment Inserts a new fragment.

Add Fragment Reference Inserts a reference to an existing fragment.

Add Repetition Inserts a new repetition control structure.

Add Parallelization Inserts a new parallelization control structure.

Add Transposition Inserts a new transposition modifier.

Add Rhythmic
Displacement

Inserts a new rhythmic displacement modifier.

Add Rhythmic Insertion Inserts a new rhythmic insertion modifier.

Add Chord Generator Inserts a new chord generator.

Add Arpeggio Generator Inserts a new arpeggio generator.

Replaces Note Index
Sequence

Replaces the note index sequence of an arpeggio
generator (see section 4.7.2).

Add Harmony Inserts a new harmony into a harmonic
progression.

Replace Harmony Replaces a harmony in a harmonic progression.

Remove Harmony Removes a harmony from a harmonic progression.

Add Rhythmic Note Inserts a new note or rest into a rhythm.

Modify Rhythmic Note
Duration

Changes the duration of a note or rest in a
rhythm.

Replace Rhythmic Note Replaces a note or rest in a rhythm.

Continued on next page

224

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Table 8.3 – Continued from previous page

Operator Description

Swap Rhythmic Notes Swaps two notes or rests in a rhythm.

Add Pitch Inserts a new pitch into a pitch sequence.

Replace Pitch Replaces a pitch in a pitch sequence.

Replace Subtree Replaces a random subtree with a randomly
generated subtree (equals to subtree mutation, see
2.3.7).

Replace Node Replaces a single node with a randomly
generated node.

Replace Rhythm Replaces a rhythm with a randomly generated
rhythm.

Replace Pitches Replaces a pitch sequence with a randomly
generated pitch sequence.

Replace Instrument Replaces an instrument context with a randomly
selected instrument context.

Remove Node Removes a random node from the composition
model.

Remove Subtree Removes a random subtree from the composition
model.

Swap Children Swap the position of two child nodes relative to
the common parent node.

Move Subtree Moves a subtree to a random position in the tree.

Move Node Moves a single node to a random position in the
tree.

8.3.6 Parameters

The evolutionary composition process can be adjusted using the parameters listed
in Table 8.4.

225

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Table 8.4: Parameters for the evolutionary composition process

Parameter Description

Number of Generations Maximum number of generations after which to
stop the algorithm, even if no optimal solution
was found.

Population Size Number of compositions in each generation.

Number of Offspring Number of offspring to produce before forming a
new generation (defaults to population size).

Number of Elitism
Individuals

Number of the best n individuals which are
copied to the next generation without
modification.

Crossover Rate Probability for performing crossover.

Mutation Rate Probability for performing mutation.

Fitness Threshold The algorithm terminates if the specified fitness
value is reached.

8.3.7 Genetic Programming Specifics

The proposed algorithm is based on the GP paradigm, which operates on tree-based
structures. Compared to traditional GAs, some specifics have to be considered.
First, the commonly applied selection algorithm is tournament selection, which in-
volves selecting a specified number of distinct individuals in the population in order
to select the best-rated one. The number of randomly selected individuals t is also
referred to as tournament size. A popular setting is t = 2, which results in low se-
lective pressure, because relatively low-rated individuals can still win a tournament.
Another popular setting for GP systems is t = 7 (Luke 2013, p. 48). As t increases,
the probability of low-rated individuals winning a tournament decreases, because
the likelihood of higher-rated compositions in the tournament increases. On the
one hand, this results in a higher selection pressure which causes the algorithm to
converge more quickly. On the other hand, higher selection pressure quickly reduces
the diversity of the population, which can lead to an inadequate exploration of the
search space. For the proposed system, experiments showed that lower selection
pressure (t = 2) is preferable.
Another specific aspect of GP is the composition of crossover and mutation oper-
ators. Conventional EAs usually apply mutation operators directly after crossover
operators. In contrast, the application of crossover and mutation operators is typ-

226

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

ically mutually exclusive in GP systems (Poli et al. 2008, p. 17). The probability
of employing either one of the operators is defined by the crossover rate Pc and
mutation rate Pm, respectively. In some GP scenarios, mutation is not even re-
quired, because subtree crossover inherently has “mutative” properties, resulting in
crossover rates near 100% (Luke 2013, p. 48).
Furthermore, another operator is introduced: reproduction involves inserting a copy
of a selected individual into the next generation without modification. The proba-
bility of reproduction Pr is defined by the difference between the combined crossover
and mutation rate to 100%, as shown in Equation 8.6 (Poli et al. 2008, p. 17).

Pc + Pm + Pr = 1 , Pr = 1 � Pc � Pm (8.6)

8.3.8 Example Evolutionary Algorithm Run

The functionality of the evolutionary algorithm is illustrated with a simple scenario.
The goal of the following evolutionary process is to evolve the opening rhythm? ˇ “(ˇ “(ˇ “(˘ “ from Beethoven’s Symphony No. 5 in C Minor, Op. 67, using statistical
distributions. The fitness function is composed of the following objectives, which
can be obtained using the analysis tools introduced in Chapter 7:

• Duration: 2 measures

• Number of voices: 1

• Note density: 7

8

• Note duration distribution: 75% eighth notes, 25% half notes

• Time signature distribution: 100% 2

4
time

• Beat distribution: first beat in the measure: 25%, second eighth beat: 25%,
third eighth beat: 25%, last eighth beat: 25%

For this simple example, a minimal evolutionary algorithm configuration was used
which is shown in table 8.5. A graphical illustration of the evolutionary process is
shown in Figure 8.4.

227

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Table 8.5: Parameters for the evolutionary composition process used for the run depicted
in Figure 8.4

Parameter Value

Number of Generations 10

Population size 10

Number of Offspring 9

Number of Elitism Individuals 1

Crossover Rate 0.5

Mutation Rate 0.4

Fitness Threshold 0

In the evolutionary algorithm run depicted in Figure 8.4, an optimal solution rep-
resenting the rhythm of the motif was found four generations after the randomly
generated initial population, shown as Generation 0. Using the depicted graph,
which can be considered a type of family tree, the origins of specific solutions can
be retraced. The found optimal solution, which is marked with a double circle in
the graph, can be traced back to the second individual with rating 0.53 in the initial
population. In this instance of the run, the final solution was found as follows:

1. The initial population was generated with random individuals. The second
composition with the rating 0.53 contained the rhythm ˇ “ ˇ “==̆ “ ˇ “ ˇ “==.

2. A mutation operator which swaps notes or rest was applied, yielding the
rhythm ˇ “ ˇ “==̌ “ ˇ “==̆ “ in generation 1, which also has the rating 0.53 according to the
fitness function.

3. Another mutation operator was applied, which turns a note into a rest or vice
versa. In this case, the last eighth note was selected and converted into a
rest, resulting in the rhythm ˇ “ ˇ “==̌“==? ˘ “. This became the best-rated individual in
generation 2 with a rating of 0.5.

4. Due to elitism, the best-rated composition was directly copied to the next
generation. Furthermore, the same individual was selected for reproduction,
which resulted in two copies of the rhythm in the third generation.

5. Another mutation operator moved the eighth rest to another position in the
rhythm, which resulted in ? ˇ “ ˇ “==̌“==̆ “, which is exactly the rhythm of Beethoven’s
famous motif.

228

Generation 1

Generation 4

Generation 0

Generation 2

Generation 3

0.53

0.53

s

2.28

n

0.53

e

0.53

s

0.53

<->rhythmicNotes

0.53

ss

1.19

2.46

*rhythmicNotes

1.19

r

2.13

*rhythmicNotes

1.69

s

1.63

1.21

*rhythmicNoteLength

1.69 1.78

s

2.08 2.08

n

3.133.38

0.53

ss

0.53

s s

0.63

s

0.50

note<->rest

1.21

s

0.53

ss s

1.03

s

1.13

+rhythmicNotess

0.53

ss

0.53

e

0.53

n

1.03

s

0.88

note<->rest

0.53

s

0.53

ssn

0.53

n n

0.81

-rhythmicNote

0.50

r

1.54

+rhythmicNote

0.50

es s

0.53

s

0.53

s

0.73

+rhythmicNote

2.03

*rhythmicNotes

0.53

s s

1.63

*rhythmicNote s

1.10

*rhythmicNote

0.00

->rhythmicNotes

0.50

rs

0.50

e

Figure 8.4: Graph illustrating a small-scale evolutionary process with the objective to reconstruct the rhythm ? ˇ “(ˇ “(ˇ “(˘ “ from the motif of Beethoven’s
Symphony No. 5 in C Minor, Op. 67. The individual solutions are labeled and colored according to their aggregated fitness function rating,
where lower ratings are considered better because the fitness function is minimized. The process found an optimal solution (indicated by the
double-circled node with rating 0.00) satisfying all statistical constraints after 4 generations. The graph visualizes which genetic operators were
used: e b= direct elite insertion, r b= reproduction, s b= subtree crossover, n b= node crossover, +rhythmicNote b= add note or rest, +rhythmicNotes
b= add multiple notes or rests, -rhythmicNote b= remove note or rest, -rhythmicNotes b= remove multiple notes or rests, *rhythmicNote b= replace
note or rest, *rhythmicNotes b= replace multiple notes or rests, *rhythmicNoteLength b= change note or rest length, note<->rest b= turn note
into rest and vice versa, ->rhythmicNote b= move note or rest, ->rhythmicNotes b= move multiple notes or rests, <->rhythmicNotes b= swap
notes or rests

229

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Note that in this example crossover operators were not capable of improving the
fitness ratings significantly, because the tree structures used in this example are
very simple and therefore the number of possible insertion points is limited. In this
case, subtree crossovers either result in nested structures which are too complicated
for the simple optimization problem presented, or cause a complete replacement of
the tree structure in the target model.

8.4 Applications

In the following sections, larger-scale applications of the proposed algorithm are
demonstrated. These include recombining existing compositions, generating style
imitations and composing music using musical and statistical constraints.

8.4.1 Composition Crossover and Variations

Composition crossover involves recombining the musical material of one or multiple
input compositions to one resulting composition. If only one input composition
is supplied, the result is effectively a variation of the given piece. Otherwise, an
arbitrary number of pieces can be recombined to a new composition.

Motivation

To demonstrate the potentials of composition crossover, a manually compiled model
in which eleven compositions were combined is presented in Figure 8.51. Elements
of the following compositions are present in this model:

• Harmonic progression from Stairway to Heaven by Led Zeppelin

• Harmonic rhythm from Piano Sonata No. 16 in C major, K. 545 by W. A.
Mozart

• Trumpet Instrumentation from Penny Lane by the Beatles

• Augmented rhythm from Golliwogg’s Cake Walk by Claude Debussy

• Pitch degrees from Don’t Stop Me Now by Queen

• Arpeggio pattern from Prelude in C Major, BWV 846 by J. S. Bach

• Bass rhythm from Herbie Hancock’s Chameleon
1An audio sample resulting from this model is available on the accompanying CD under

Audio/Crossover/Crossover.mp3

230

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

• Bass pitch pattern of Hey Jude by the Beatles

• First measure of Beethoven’s Symphony No. 5 in C Minor, Op. 67 motif

• Hi-hat and bass drum pattern from One by Metallica

• Snare Drum pattern from With Arms Wide Open by Creed

The model in Figure 8.5 illustrates powerful possibilities of the context-based model.
By selecting and recombining individual musical aspects of compositions, which
happens on fine-grained musical levels (and not on the basis of notes and rests),
structurally complex and musically coherent results can be produced with high like-
lihood. Due to the context-dependent interpretation of all musical aspects, the
model structure inherently ensures a certain musical plausibility.

Implementation

In order to cross a given set of input compositions, the evolutionary algorithm is
run with the following configuration:

• The initial generation is populated with copies of the input compositions.
Each node in each composition is tagged with an identifier corresponding to
the respective source file.

• The crossover probability is set to a high value (i.e. slightly less than or equal
to 100%), whereas the mutation probability is set to zero.

• The goal of the algorithm is to perform crossover operations until the following
criteria are met as closely as possible:

– The number of measures of the resulting composition is equal to a pre-
defined number.

– Composition source tags are distributed equally (e.g. when crossing two
compositions, tags should be distributed fifty-fifty, for three compositions
each should have a ratio of 1

3
, etc.).

– The overall note density of the resulting compositions is equal to the
average note density of the given input compositions.

This algorithm configuration can also be used to generate variations of a given
composition. In this special case, the initial population is filled with copies of one
single piece. Consequently, the composition will be crossed with itself throughout
the evolutionary process.

231

Mixing Compositions
composition

tonal center Am

scale minor

repeat 2

chord progression Am Ammaj79/G# C/G D/F# Am/F G Am

harmonic rhythm 1 2 2 2 2 2 2

parallelization

instrument trumpet instrument piano instrument bass instrument cello instrument hiHatClosed instrument bassDrum instrument snare

augmentation

rhythm 16 8 16 8 8 rhythm 16 8 16 4 rhythm _16 16 16 16 4 rhythm _16 16 16 16 8 8

pitches 2 3 4 7 2 pitches 2 2 1 0 pitches 1 2 1 2 pitches 2 4 2 1 0

repeat 4

arpeggio generator

rhythm 8 8 8 8 8 8 8 8

repeat 4

rhythm 8. 16 _8 8 _8 8 8 8

pitches @getBassNote() @getBassNote() @getBassNote() @getBassNote() @getBassNote() @getBassNote()

repeat 4

rhythm _8 8 8 8 2

pitches 4 4 4 2

repeat 32

rhythm 8

repeat 4

rhythm 4. 4 8 8. 16

repeat 4

rhythm _8. 16 _2 rhythm 4

loudness p loudness f

Key and Chord
Progression from

Stairway to Heaven
(Led Zeppelin)

Harmonic Rhythm
from Mozart's Piano

Sonata KV 545

Augmented Rhythm
from Golliwogg's

Cake Walk (Debussy)

Pitch Degrees from
Don't Stop Me Now

(Queen)

Arpeggio Pattern
from Bach's C Major

Prelude BWV 846

Bass Rhythm from
Herbie Hancock's

Chameleon

Beethoven's famous
5th Symphony Theme

Hihat and Bass Drum
from One (Metallica)

Snare Drum from
With Arms Wide
Open (Creed)

Bass Pitch Pattern of
Hey Jude (Beatles)

Figure 8.5: Manually compiled model recombining musical fragments of eleven different compositions. This model demonstrates both the
expressiveness of the proposed model and the potential of algorithmic recombination of musical compositions by putting individual aspects of
pieces into new musical contexts. Corresponding files are available on the accompanying CD under Composer/ManualCrossover (see Appendix A).

232

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Graphical User Interface

MPS provides a user interface to configure crossover runs. It is presented in Figure
8.6. It allows users to configure input compositions, a destination folder, the desired
number of measures of the output composition and parameters for the evolutionary
algorithm.

Figure 8.6: User interface to configure the evolutionary algorithm for composition
crossover. At the top, input compositions and a destination directory are specified. Below
that, the desired number of measures of the crossed composition is specified. Evolutionary
algorithm parameters can be set in the lower section. It is also possible to supply cus-
tom statistical target distributions in CSV format, which are supplied in a separate target
distribution folder.

Results

A composition model generated by the evolutionary algorithm only by means of
crossover operations is presented in Figure 8.7. The following nine composition
models were given as input:

233

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

• J. S. Bach, Prelude in C Major, BWV 846, mm. 1–4

• The Beatles, Hey Jude

• Ludwig van Beethoven, Symphony No. 5 in C Minor, Op. 67, Mv. I, mm. 1–21

• Ludwig van Beethoven, Piano Sonata No. 14 in C# minor, Mv. I, mm. 1–4

• Deep Purple, Smoke on the Water, main guitar riff

• Wolfgang Amadeus Mozart, Flute and Harp Concerto in C major, K. 299/297c,
opening theme

• Wolfgang Amadeus Mozart, Piano Sonata No. 16 in C major, K. 545, mm. 1–8

• Queen, Bohemian Rhapsody, vocal introduction

• Steve Reich, Clapping Music

�����������

��� ����

�������� ����������� � ���� � ���� ������ ������ ������ �

�������� ������ � � � � � � � �

������ �

������ �

���������������

�������� ���������
�������������� �� ���������������� ����

�������� ���������
��������������� �� �������������� �� ������������������ ��� �� �� �� �� ��

���������������

������ � � � �� �� �� ������ ��� � � � � �

������ �� � �

Figure 8.7: Context tree model of a composition generated by the evolutionary algorithm by
recombining existing compositions. It was produced by applying only crossover operations
starting from seven existing musical pieces. The resulting score is shown in Figure 8.8.

The target fitness functions listed in Table 8.6 were specified. The algorithm pro-
duced a combined composition with 8 measures after 250 generations. Only seven

234

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

!

"

#

#

"##
##

$

#
#

#A

%#
#

&
#
'#

&

#
!#

&
#

C %

" #

$

'# #

(

##
#

) #

* #
#

$
+

#

&

#

(

+ #

+
#

(

#

& #

* #

#

#

#

(

#

&

#!!#
#

&Dm/C#

*

#

(

"#
"#

"

#

$

#
"

, #

"# %#
#

"

#
&

##

, !#

#
&

#
#

#

"#
#

&

#
+
+ '!

#
#

#
D/F"

4

+
#

#

&
(

#
#

#G"7

#

" ,#

#
#
$

" ##

#

#-
##

#

"
, !

#
#

#
F

"

%#

&

##

-
"

#

#
!!#

&
(

#
.
.
.

"

#"

#

&#

###

C"m/G"

#
$

#

&

##
#

!#

&
(

+
+
+6

#

$

! " #

'
" "# #

"#

$

"##
#

#
G"sus4

##

" "#
%

"

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 8.8: Score of a composition generated by the evolutionary algorithm through re-
combining existing compositions. It was generated by applying only crossover operations
starting from seven existing musical pieces. The corresponding model is shown in Fig-
ure 8.7. Corresponding files are available on the accompanying CD under Composer/
AutomatedCrossover (see Appendix A).

of the nine given composition are a part of the final result, the distribution of which
is listed in Table 8.7.

Table 8.6: Fitness functions for the evolutionary crossover process

Fitness Function Weight
Target
Value

Actual
Value Distance

Number of Measures 1 8 8 0

Note Density 10 0.9 0.82 0.78

Chord Compliance 2 0.75 0.94 0.38

Number of Voices 5 4 3 5

Superfluous Model
Elements

1 0 0 0

Continued on next page

235

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Table 8.6 – Continued from previous page

Fitness Function Weight
Target
Value

Actual
Value Distance

Source Tag Distribution 10 Equal ratio of 1

9

for each input
composition

see Table 8.7 8.03

Total Distance 0 14.19 14.19

Table 8.7: Ratios of origin composition elements in the crossover composition

Composition Percentage

J. S. Bach, Prelude in C Major, BWV 846 41.0%

The Beatles, Hey Jude 15.4%

Ludwig van Beethoven, Piano Sonata No. 14 in C# minor 15.4%

Queen, Bohemian Rhapsody 12.8%

Wolfgang Amadeus Mozart, Piano Sonata No. 16 in C major, K.
545

7.7%

Ludwig van Beethoven, Symphony No. 5 in C Minor, Op. 67 5.1%

Deep Purple, Smoke on the Water 2.6%

The resulting piece is mainly reminiscent of Bach’s Prelude in C Major, BWV 846,
since it is based on its arpeggio structure, which is dependent on a changing harmonic
context. This also aligns with the distribution of source compositions shown in Table
8.7, which shows that 41% of the piece originate from Bach’s prelude. Table 8.7 also
reveals that the algorithm was not able to construct a context tree model containing
the same amount of musical material from all nine input compositions, at least not
in 250 generations. Overall, the resulting composition can be considered ‘creative’,
demonstrating that at least some aspects of combinational creativity (see Chapter
2.2.3) can be simulated by means of EAs.

8.4.2 Style Imitations

Another possible application of the evolutionary algorithm is generating musical
material imitating a specific musical styles.

236

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Implementation

Style imitations are produced as follows:

1. An existing piece or a collection of pieces is analyzed statistically as demon-
strated in Chapter 7

2. A desired subset of the analysis results is selected

3. The selected analysis results are used as target values and/or distributions for
the evolutionary algorithm

4. The evolutionary algorithm is utilized to produce compositions with similar
or equal statistical properties as the analyzed music

Results

The algorithm is capable of generating short musical phrases resembling the style
of pre-analyzed pieces. As an example, a style imitation of the first four measures
of W. A. Mozart’s Piano Sonata No. 16 in C major, K. 545 is generated. The
methodology is presented in Figure 8.9.
In the first step, both voices in the input are analyzed separately (for details about
analysis scopes, refer to section 7.2). Subsequently, a subset of desired statistical
features is selected. In the example, the following features were chosen:

• Note density

• Harmony compliance (the percentage of notes which belong to the current
harmonic context, which is notated above the score)

• Note duration distribution

• Beat distribution (note onset times relative to the beginning of a measure)

• Interval leap distribution (relative distance of successive pitches)

The selected features are used as input for the evolutionary algorithm in order to
construct a fitness function. The goal of the optimization process is to minimize the
differences between the actual distributions (which are analyzed for each generated
composition) and the given distributions. The harmonic progression shown in 8.9
was predefined, as described in detail in section 8.4.3. One of the generated results
complying to the given features is presented in Figure 8.10.
The generated melody is reminiscent of the original right hand motif by Mozart. As
regards the left hand, the algorithm generated a nearly identical accompaniment.

237

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Style Imitations

Mozart,
Piano

Sonata No.
16 in C

Major, KV
545

Statistical Analysis

Note Density:
0.875

Harmony
Compliance: 0.87

Note Duration
Distribution

Beat
Distribution

Interval Leap
Distribution

Note Density:
1.0

Harmony
Compliance: 1.0

Note Duration
Distribution

Beat
Distribution

Interval Leap
Distribution

Results are used as Target Distributions for Evolutionary Algorithm

Sonata Facile (KV 545), 1st movement

W.A. Mozart

! !

!

!! !

G7!

!

"

!

#

!

! C!

!

$ %

$ % !

C

!
!!

!

!

&

!!

!

!

!

!

!

!

!

G7!

!

#

! !

! C!

! !

F&

! ! !
!

3

$
$!

!

! !!

C

!

!

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 8.9: Methodology applied to generate style imitations. The analyzed example is
W. A. Mozart’s Piano Sonata No. 16 in C major, K. 545, mm. 1–4. Corresponding files
are available on the accompanying CD under Examples/Compositions/Mozart/KV545_
SonataFacile (see Appendix A).

!

!

! !

!"
!!! !

!

!!

!

!

#

!!

!

!

!

! !!

!!

!

$

!

! !

!

!

!%& !

%& #
!

!!! !

!

! !!

'

!! !

!!

!

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 8.10: Style imitation of W. A. Mozart, Piano Sonata No. 16 in C major, K. 545,
mm. 1–4, generated by the evolutionary algorithm. Corresponding files can be found on
the accompanying CD under Composer/StyleImitation (see Appendix A).

238

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

The only difference is the beginning of the last measure, in which Mozart used B and
D as lower notes, whereas the algorithm used D and F. The latter is indeed 100%
harmony compliant, however the chord generated by the algorithm does not fully
embody the dominant seventh chord intended by Mozart. Overall, the generated
piece is a plausible style imitation of the given input composition.

8.4.3 Generating Compositions with Predefined Structures

⌥ ⌅
1 composition final
2 {
3 key C
4 {
5 repeat 2
6 {
7 harmonicProgression I7 IV7 I7 IV7 I7 V7 IV7 I7 V7
8 {
9 harmonicRhythm 1 1 2! 2! 2! 1 1 1 1

10 {
11 parallel
12 {
13 scale blues
14 {
15 fragmentRef lead
16 }
17 fragmentRef accompaniment
18 }
19 }
20 }
21 }
22 }
23 }
24

25 fragment lead fixed
26 fragment accompaniment fixed⌃ ⇧

Listing 8.1: Template composition model specifying fixed nodes and final subtrees which
are not modified by the evolutionary algorithm

Under certain conditions it is eligible to predefine structures of generated composi-
tions. Examples for these are sections of pieces (such as verse or chorus), repetitions,
scales to be used or harmonic constraints such as keys and harmonic progressions.
In the following example, a blues composition is generated by the evolutionary
algorithm. For that purpose, a typical harmonic blues progression is predefined.
This is accomplished by providing a template composition model, which can be
specified using the composition language introduced in Chapter 4. Two additional
keywords are utilized to instruct the algorithm that certain nodes in the composition
model must not be removed and/or modified during the evolutionary process: the
keyword fixed indicates that child nodes can be appended, but the node must not
be removed. When specifying a final node, the complete subtree starting at the
corresponding node must not be removed and no child nodes can be appended.

239

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Refer to Listing 8.1, in which a template composition model for a blues is demon-
strated. The corresponding context tree model is depicted in Figure 8.11.

composition

key C

repeat 2

harmonic progression I7 IV7 I7 IV7 I7 V7 IV7 I7 V7

harmonic rhythm 1 1 2! 2! 2! 1 1 1 1

parallelization

scale blues reference

reference

lead

accompaniment

Figure 8.11: Context tree model of a template composition for a blues corresponding to
the language representation in Listing 8.1. Fixed nodes are surrounded by octagons and
final subtrees are marked with double octagons.

Implementation

If a template model is given as input, the initial generation is populated with com-
plemented copies of the given template model. During the evolutionary process, the
fixed and final annotations in the model are considered whenever crossover or
mutation operators are applied. In particular, crossover point selection disregards
all fixed and final nodes. With regard to mutation, no mutations are permitted for
final nodes and mutation actions for fixed nodes are limited to child node additions.

240

accompaniment

transpose (mode octaves, offset -1)

composition

key C

repeat 2 harmony I7

harmonic progression I7 IV7 I7 IV7 I7 V7 IV7 I7 V7

harmonic rhythm 1 1 2! 2! 2! 1 1 1 1

parallelization

repeat 12 scale blues

lead

rhythm 1

parallelization

pitches 0 chordGenerator
numberOfNotes: 4

parallel interval mode absolute -12

repeat 2

rhythm 8

repeat 2 pitches (relative to harmony) [0, 5] pitches (relative to harmony) [0, 4]

pitches (relative to harmony) [0, 4]

rhythm 8 4 8 4 2 4 8 8 8 8 pitches 5 2 4 4 3 rhythm 8 _8 8 8 8 8 8 8 rhythm 16 16 8 16 16 16 4 4 8 16 16 16 8 4 16 8 16 16 16

pitches 5 2 4 3 1 pitches 0 2 0 5 4 2 4 3 5 5 pitches 4 5 6 7 0 1 2 4 1 3 pitches 1 2 6 2 5 6 5 1 0 6

rhythm 8 8 _4 4 8 8

rhythm 4 4 4 16 8 pitches 4 5 6 7 0 1 2 rhythm 4 4 4

pitches 3 1 3

pitches 4 6 6 0 0 4 5 4 4 2 2 6 7 5 5 1 2 1 0

Figure 8.12: Context tree model of a blues composition generated by the evolutionary algorithm. Nodes surrounded by octagons were predefined.
The subtree below the lead node was generated by the evolutionary algorithm. Corresponding files are available on the accompanying CD under
Composer/Blues (see Appendix A).

241

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Results

An extended template composition model based on the previously presented model
was used to generate a blues composition. In comparison to the presented model, a
simple piano accompaniment and a final chord was added. The complete resulting
model containing both predefined and generated nodes is presented in Figure 8.12.
The corresponding score is shown in Figure 8.13.
The program also generated a blues composition with four parts, namely a lead
voice, piano, bass and drums. The corresponding model and audio files are available
on the accompanying CD under Composer/BluesFourParts (also see Appendix A).

 !
""
"

""
"

""
"#

""
"

""
#
""
"$

""
"#

""
"

""""
%"

"

"
&
""
"

"" ""
"

""

#
"

!
""
"#

""
"

"
mp

""
"

"
"'

""
mp!Piano

$
""
"(

"""" ""
"

""""
"

""
"

""
#

)
"
"" ""
"!

"" ""(

"
"#

""
"

" ""
"# "

" """"
"

""
#

"""
"

"" ""
"

""""
"

""
$"#

""
"

""""
"

""""
"

""
#""
" ""

"""
" "

)
'5

! """"
" &""

"
"""" ""

"
""""

"!
""
"$

""
" "#

**
**

"" ""
"

""
"! "# "

""
" "
""

"" "
""

"
""

"
""
#
""

%
""

" "
"" ""

+ ,,,,,
"#
"" "

- # "
"""

" "
""

"#
" ""

""
" """ ""

"
""""

" "#
,
#!

9 '
) "

"#
""

. / "$
""

"#
"" ""

"
""""

". "
""

*!"$ "
"" ""

Music engraving by LilyPond 2.18.2—www.lilypond.org

Figure 8.13: Blues composition generated by the evolutionary algorithm resulting from
the context tree model in figure 8.12. The accompaniment in the left hand and the final
chord were predefined. The melody in the right hand part was generated by the algorithm.
Corresponding files can be found on the accompanying CD under Composer/Blues (see
Appendix A).

8.4.4 Generating Compositions with Multiple Sections

Using the methodologies presented so far, the algorithm generates musical material
that retains certain statistical properties, hence lacking in desirable musical devel-
opments. Against the background of identifying individual sections with different
statistical attributes, these can be identified when analyzing human compositions.
This is illustrated in Figure 8.14.

242

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHMGoal: Section-wise Analysis and Optimization

Mozart, Piano Sonata No. 16 in C Major, KV 545

� �

�
��

�

�

� �

��

� �

�
�
�

�

� � � �

� �

�

�

�

�

� � � �

� �

�
�

� �

� �

� �

� � � �

� �

�

�

� � �

�

� �

�

� �

�

��

�

�

�
�

� �

� �

�

� � � �

�

� ��

� �

� � � �

�	 � � �

�

�

�

� �

��

�

� �
� �

� � � �

� � �

�

�

��
�

����
��

� � � �

� � � �

� �

� � �

�

��

� �

��
�

�

�

�

�

�
�

�

� �

�

� �

Transcription © R.S.B 2011

� � �

�

� �

�

�

�
�
�

� � � �

��

�

�
�

�

�
�

� � � �

� � �

�

�

� �

�

� �

� � �

�

�

� � �

�

�

�

�
�

�

�
�

�

��

�

�

�

�

�

�
�

�

�

� �

�

� �
�

� �

8

11

15

�� �
��

��
��

� � �
�

� � �� � � �
� � �� � �

�� �
� � � �

� �
��

� ��
�� � ��

�
� � ��

� � � � � �
� ��

� � ��
� � � �

� � ���
5

��
��

�� � ��
�� � ��

�
�

�
� � ��

�
��

��
�� � �� �

�

�
� �

�
�

1. Allegro

KV 545Piano Sonata No 16 in C major

Wolfgang Amadeus Mozart

Figure 8.14: Sections with individual statistical attributes in W. A. Mozart’s Piano Sonata
No. 16 in C major, K. 545. Score edited by RSB and made available at imslp.org under
the Creative Commons Attribution 3.0 Unported License.

An approach for generating compositions with multiple sections, which was devel-
oped in the scope of this dissertation, is the division of the fitness function into
sections and voices, to which individual statistical target distributions can be as-
signed. The developed data structure is illustrated in Figure 8.15.

Goal: Section-wise Analysis and Optimization

Global Target Features
Section 1 Section 2 …

Section-specific Target Features Section-specific Target Features …

Voice 1 Voice-specific Target Features Voice-specific Target Features …

Voice 2 Voice-specific Target Features Voice-specific Target Features …

… … … …

Evolutionary Algorithm Input Data Structure

Figure 8.15: Fitness function defining statistical target features on three different hierarchy
levels

243

https://imslp.org/wiki/Piano_Sonata_No.16_in_C_major%2C_K.545_(Mozart%2C_Wolfgang_Amadeus)
https://creativecommons.org/licenses/by/3.0/

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

The data structure contains statistical target features on three different hierarchy
levels:

1. Global target features valid for the whole composition

2. Section-specific target features

3. Voice-specific target features which can be assigned to each section in each
voice.

Using this data structure, musical developments in the generated compositions are
possible, since consecutive sections can have different statistical properties. Further-
more, the development of polyphonic music is possible, since concurrent voices can
have different characteristics as well.

Graphical User Interface

The graphical user interface for configuring the evolutionary algorithm for section-
wise composition is depicted in Figure 8.16. Compared to the interface in Figure
8.6, the dialog contains additional settings for specifying the number of sections and
voices to be composed and an optional list of instruments to be used.
The statistical target features and distributions are supplied in the form of CSV files.
These have to be stored in a predefined folder structure, which is shown in Figure
8.17. Depending on the location of the CSV files, the scope of the corresponding
fitness function is determined. A fitness function structure according to Figure 8.15
is constructed from the given files.

Implementation

In a first attempt, an EA optimizing all statistical target features in all voices and
sections in a large composition model was implemented. This implementation was
not productive due to the fact that the optimization process in most cases was not
able to reach optimal solutions in acceptable time. The problem is rooted in the
temporal semantics of the context tree composition model. In large trees, small
local changes can have large global impacts. For example, if a note is added or
removed at the very beginning of a composition, all following notes are shifted,
causing previously computed onset positions relative to measure beginnings and
simultaneously audible note combinations to become invalid. Consequently, these
have to be optimized again. In this process, music is shifted again and the algorithm
gets stuck in a loop.

244

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Figure 8.16: Graphical user interface for section-wise composition generation

To counteract this issue, the following strategy was implemented: Each part (i.e.
each section for each voice) is independently evolved in separate evolutionary pro-
cesses. The target distributions for each part are determined by combining global,
section-specific and the respective voice-specific target feature sets. In case target
features of the same type are present in multiple layers, the innermost target feature
set is used.
The part-specific evolutionary processes are in turn split into multiple stages to
generate the following musical contexts:

• Instrumentation

• Metric contexts

• Chord progressions

• Rhythms

• Pitches

In each stage, only relevant target distributions are considered, reducing the number
of optimization goals for the algorithm. Furthermore, after each stage is finished,

245

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

Figure 8.17: Folder structure containing CSV files for target features and distributions,
from which a section-wise fitness function is built according to Figure 8.15

.

the results of the corresponding stage are ‘frozen’ and not modified again in later
stages. This avoids the mentioned problems when optimizing all musical aspects at
the same time.

Results

Using the proposed approach, the system is capable of generating polyphonic musi-
cal compositions with varying musical characteristics. This is achieved by generating
multiple sections containing voices with individual statistical properties. The fol-
lowing result was generated by specifying arbitrary statistical target feature values
(shown in Table 8.8) and statistical target distributions (shown in Figures 8.18,
8.19, 8.20, 8.21 and 8.22) as input. These target values and distributions can ei-
ther be adopted from music analysis results (see Chapter 7) or be specified in an

246

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

arbitrary manner. In the latter case, the computer generates music without any
prior knowledge or analysis of existing musical compositions. One possible resulting
composition is shown in Figure 8.23.

Table 8.8: Target values and actual values of statistical features of the generated compo-
sition

Feature Scope
Target
Value

Actual
Value

Chord Compliance Section 1 1.0 0.944

Chord Compliance Section 2 1.0 0.938

Chord Progression Length Section 1 4 4

Chord Progression Length Section 2 4 4

Duration Section 1 4.0 4.0

Duration Section 2 4.0 4.0

Note Density Section 1 1.0 1.0

Note Density Section 2 0.9 0.89

The resulting compositions are musically more interesting than the ones generated
based on the techniques presented in the previous chapters due to the fact that
musical developments and changes are possible. One thing to consider for future de-
velopments is that the transitions between the sections are sometimes abrupt, since
the sections are generated independently from each other and therefore no coherence
between the units is guaranteed. However, musical coherence within the individual
sections can be accomplished using fitness functions concerning consonance of simul-
taneously audible notes and harmonic compliance values. Apart from the amendable
section transitions, the program demonstrates that interesting musical output can
be generated according to statistical properties.

247

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

�1 �0.5 0 0.5 1 1.5 2
0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

Circle of Fifths Distance

R
el

at
iv

e
F
re

qu
en

cy

Circle of Fifths Distance Distribution

Figure 8.18: Circle of fifths distance distribution used to generate harmonic progressions
.

248

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

1

4

1

8

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Note Duration

R
el

at
iv

e
F
re

qu
en

cy

Note Duration Distribution

(a) Voice 1

1

16

1

8

1

4

3

8

1

2

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Note Duration

R
el

at
iv

e
F
re

qu
en

cy

Note Duration Distribution

(b) Voice 2

1

4

1

8

1

2

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Note Duration

R
el

at
iv

e
F
re

qu
en

cy

Note Duration Distribution

(c) Voice 3

1

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Note Duration

R
el

at
iv

e
F
re

qu
en

cy

Note Duration Distribution

(d) Voice 4

Figure 8.19: Target note duration distributions for the first section

249

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

7

8

15

16

0

2 · 10�2

4 · 10�2

6 · 10�2

8 · 10�2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

(a) Voice 1

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

7

8

15

16
1

0

1 · 10�2

2 · 10�2

3 · 10�2

4 · 10�2

5 · 10�2

6 · 10�2

7 · 10�2

8 · 10�2

9 · 10�2

0.1

0.11

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

(b) Voice 2

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

7

8

15

16

0

2 · 10�2

4 · 10�2

6 · 10�2

8 · 10�2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

(c) Voice 3

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

0

2 · 10�2

4 · 10�2

6 · 10�2

8 · 10�2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

(d) Voice 4

Figure 8.20: Target beat distributions for the first section

250

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

1

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Note Duration

R
el

at
iv

e
F
re

qu
en

cy

Note Duration Distribution

(a) Voice 1

1

4

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Note Duration

R
el

at
iv

e
F
re

qu
en

cy

Note Duration Distribution

(b) Voice 2

1

4

1

8

1

2

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Note Duration

R
el

at
iv

e
F
re

qu
en

cy

Note Duration Distribution

(c) Voice 3

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Note Duration

R
el

at
iv

e
F
re

qu
en

cy

Note Duration Distribution

(d) Voice 4

Figure 8.21: Target note duration distributions for the second section

251

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

(a) Voice 1

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

(b) Voice 2

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

9

16

5

8

11

16

3

4

13

16

7

8

15

16

0

2 · 10�2

4 · 10�2

6 · 10�2

8 · 10�2

0.1

0.12

0.14

0.16

0.18

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

(c) Voice 3

0 1

16

1

8

3

16

1

4

5

16

3

8

7

16

1

2

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Beat (Point of Time in Measure)

R
el

at
iv

e
F
re

qu
en

cy

Beat Distribution

(d) Voice 4

Figure 8.22: Target beat distributions for the second section

252

composition

section0

section1

key F#m harmonic progression F#m D Cbm C#m harmonic rhythm 1 1 1 1 parallelization

instrument electricPiano

instrument kalimba

instrument harp

instrument bass

rhythm 4 4 8 4 8 4 4 4 8 8 8 4 8 8 8 4 4 8 8 4 4 pitches (relative to harmony) 4 7 7 0 2 2 0 0 7 7 7 4 2 0 4

rhythm 4 16 4 16 4 4 16 2 4 2 16 4 4 4. 8 2 pitches (relative to harmony) 7 0 7 4 2 7 2 7 2 1 2 0 0

rhythm 4 8 4 8 4 8 8 8 8 8 8 4 2 2 4 4 4 8 8 pitches (relative to harmony) 4 7 2 0 7 7 2 0 0 7 7 7 4 2 0 4

rhythm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 pitches (relative to harmony) 2 1 0 7 5 4 0 4 7 0 2 7 7 0 0

key G

harmonic progression G F#m A D

harmonic rhythm 1 1 1 1 parallelization

instrument electricPiano

instrument kalimba

instrument harp

instrument bass

rhythm 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 _8 8 8 8 8 8 8 8 8 8 _4 8 8 8 8 8 pitches (relative to harmony) 0 0 0 4 2 2 0 0 2

rhythm 4 2 4 4 2 4 4 2 4 4 4 _4 4 pitches (relative to harmony) 0 0 2 0 0 2 4 0 0 2

rhythm 4 8 _4 4 4 8 8 8 4 8 _8 8 4 4 8 8 8 2 2 pitches (relative to harmony) 2 3 0 4 5 3 7 2 4 7 0 3 0 4 7 7

rhythm 2 2 _2 2 2 2 2 2 pitches (relative to harmony) 0 0 2 0 7 0

(a) Context tree model representation (in left-to-right layout for better readability)

!

"

"

"

"
"

"

"
#

"

$%

!!

"

"

C%m
"

"

"
"

"
"

"
"

" !
""

"
"
"

" "

C&m
"
"

"
"

" "

" !

%

"%

% '
"
"
#
"

%
%

"%

"$
"

"

(&&&)
(&&&)

"

"

" **

"

"
"

"
(

&

&&&

**

)
+

&

&&&

**

)

&**
&

"

"

"

E-Piano

Kalimba

Harp

Bass

,
"
#
"

"

"
"

"
"
,

$"
",

"
"
"

D

"
"
"

"
$

F&m

"
"

"

-
"
'"
$"

"
&
#
""

"

"

"

"

"

"

#
&

.

.

A"
"

"
"
"$ $"

#

"
", "
/
#

"" "
""

D

"
"
#

#

"

"
"

" /,

#
"$

"" " "

"

"
"

/

"

#&

5 (
(
(
+

&
&
&

G

"
"
"

#

"
#
"

"

"

& ""

"

"

"
#0

"
"
"F
&m

$"

"

Music engraving by LilyPond 2.18.2—www.lilypond.org

!

"

"

"

"
"

"

"
#

"

$%

!!

"

"

C%m
"

"

"
"

"
"

"
"

" !
""

"
"
"

" "

C&m
"
"

"
"

" "

" !

%

"%

% '
"
"
#
"

%
%

"%

"$
"

"

(&&&)
(&&&)

"

"

" **

"

"
"

"
(

&

&&&

**

)
+

&

&&&

**

)

&**
&

"

"

"

E-Piano

Kalimba

Harp

Bass

,
"
#
"

"

"
"

"
"
,

$"
",

"
"
"

D

"
"
"

"
$

F&m

"
"

"

-
"
'"
$"

"
&
#
""

"

"

"

"

"

"

#
&

.

.

A"
"

"
"
"$ $"

#

"
", "
/
#

"" "
""

D

"
"
#

#

"

"
"

" /,

#
"$

"" " "

"

"
"

/

"

#&

5 (
(
(
+

&
&
&

G

"
"
"

#

"
#
"

"

"

& ""

"

"

"
#0

"
"
"F
&m

$"

"

Music engraving by LilyPond 2.18.2—www.lilypond.org

(b) Score representation

Figure 8.23: Composition generated by the evolutionary algorithm containing two sections with different statistical and musical properties.
Corresponding files are available on the accompanying CD under Composer/SectionWiseComposition (see Appendix A).

253

CHAPTER 8. EVOLUTIONARY COMPOSITION ALGORITHM

8.5 Summary

Four automated music composition scenarios based on an EA were presented in this
chapter. The algorithm is not only capable of combining an arbitrary number of
compositions to a new piece by recombining musical material, it can also be used
to generate style imitations and original compositions with or without predefined
musical structures. Although the musical quality of the compositions is not compa-
rable to notable human composers, the algorithm is very versatile and pursuing the
further development of the program is promising.
In future revisions, the algorithm could be extended to utilize more musical modifiers
and control structures, which were introduced in Chapter 4. This could result in
musically even more plausible compositions. Moreover, the exploration of statistical
distribution combinations yielding musically interesting results deserve study. Why
not combine the rhythmic qualities of Bach with jazz harmonies and Indian melody
intervals? For this purpose, the development of a GUI replacing the current file-
based interface (see Figure 8.17) would be preferable.

254

Part IV

Conclusions and Appendices

255

Chapter 9

Conclusions

Do not fear mistakes. There are none.

— Miles Davis

In this work, various symbolic music processing applications and algorithms were
developed in combination with new music representation models, which are capable
of representing various musical aspects individually. This type of representation
offers new possibilities for transforming, searching, analyzing and algorithmically
generating music.
Two different models were proposed: a layer-based model, comprised of one or mul-
tiple streams containing musical context dimension layers, and a tree-based model,
which has multiple advantages: musical information can be reused elegantly in or-
der to minimize redundancy, musical modifications can be specified, and control
structures are available, which can be used in conjunction with expressions. A
corresponding domain-specific composition language for textual representation of
tree-based composition models was developed to facilitate the work with textual
representations of context tree models.
As a means to apply, test, and validate the proposed models, algorithms and the
language, these were combined to a software application named MPS, which can be
used by composers, musicians and scientists for composing, analyzing and generating
music.
A key aspect of this work is to demonstrate that appropriate data representation
models are equally important as the employed algorithms. For many music research
applications, interpreting music as sequences of notes and rests is not sufficient. The
multi-layered models introduced in this dissertation provide fine-grained access to
individual musical dimensions, which are arbitrarily extensible.
Applications of the proposed models introduced in this work include importing sym-

256

CHAPTER 9. CONCLUSIONS

bolic music standard formats, namely MIDI and MusicXML, and conversions be-
tween the proposed music representation models. The application is also capable
of exporting LilyPond and SuperCollider files, which enables users to produce and
play back scores.
A music search algorithm was proposed, which allows finding specific musical ma-
terial in certain musical contexts. This advanced context-based search functionality
goes beyond simple sequence-based search scenarios, because pattern combinations
of individual musical aspects can be specified. This work also demonstrated ad-
vanced music analysis capabilities leveraging information extraction and combina-
tion of individual musical context layers in the proposed models.
Finally, an innovative evolutionary algorithm was introduced. It can be configured
for various applications, including crossover of an arbitrary number of compositions,
style imitations and section-wise composition generation. The algorithm reveals that
some aspects of musical creativity can be modeled artificially. However, science is
still far away from understanding and reproducing all aspects of human creativity
with regard to music. The research contributions presented in this dissertation,
however, describe some approaches in this direction.
Future enhancements of the system could be: supporting new standard formats for
importing and exporting music, extending the model and the language with more
musical contexts and elements, supporting electroacoustic compositions, improving
percussion instrument support, adding new analysis algorithms and visualizations,
optimizing the performance of the proposed algorithms, and providing graphical user
interfaces for statistical features and distributions for the evolutionary algorithm.
In conclusion, MPS is a comprehensive software system for symbolic music pro-
cessing, which can be used as a versatile tool for a broad range of applications,
as shown in this dissertation. The software is freely available for Windows, Linux
and Mac OS X at musicprocessing.net. It is designed to be a flexible platform for
music notation, composition, analysis, generation and future music-related research
projects.

257

http://www.musicprocessing.net/

Bibliography

Alfonseca, Manuel et al. (2006). “A Fitness Function for Computer-generated Music
using Genetic Algorithms”. In: WSEAS Transactions on Information Science and
Applications 3 (3), pp. 518–525.

Alfonseca, Manuel et al. (2007). “A Simple Genetic Algorithm for Music Generation
by Means of Algorithmic Information Theory”. In: IEEE Congress on Evolution-
ary Computation, CEC 2007 (Singapore), pp. 3035–3042.

Allan, Moray (2002). “Harmonising Chorales in the Style of Johann Sebastian Bach”.
PhD thesis. University of Edinburgh.

Alpaydin, Ethem (2014). Introduction to Machine Learning. 3rd ed. MIT Press.
isbn: 9780262028189.

Arbib, Michael A., ed. (2013). Language, Music, and the Brain: A Mysterious Re-
lationship. Cambridge, Massachusetts: MIT Press. isbn: 9780262314138.

Ariza, Christopher and Michael Scott Cuthbert (2010). “Modeling Beats, Accents,
Beams, and Time Signatures Hierarchically with music21 Meter Objects”. In:
Proceedings of the International Computer Music Conference, ICMC 2010 (New
York, USA).

Ariza, Christopher and Michael Scott Cuthbert (2011). “The music21 Stream: A New
Object Model for Representing, Filtering, and Transforming Symbolic Musical
Structures”. In: Proceedings of the International Computer Music Conference,
ICMC 2011 (Huddersfield, UK).

Azevedo, Frederico A.C. et al. (2009). “Equal Numbers of Neuronal and Nonneuronal
Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain”. In:
Journal of Comparative Neurology 513.5, pp. 532–541. doi: 10.1002/cne.21974.

Bagad, Vilas S. and Iresh A. Dhotre (2009). Network Programming & Management.
Technical Publications. isbn: 9788184317565.

Barlow, Clarence (2012). On Musiquantics. Tech. rep. 51. Johannes Gutenberg Uni-
versity Mainz.

Baroni, Mario et al. (1982). “A Grammar for Melody: Relationships between Melody
and Harmony”. In: Musical Grammars and Computer Analysis. Ed. by Mario

258

https://doi.org/10.1002/cne.21974

Baroni and Laura Callegari. Florence, Italy: Casa Editrice Leo S. Olschki. isbn:
9788822232298.

Batlle, Eloi and Pedro Cano (2000). “Automatic Segmentation for Music Classifi-
cation using Competitive Hidden Markov Models”. In: Proceedings of the First
International Conference on Music Information Retrieval, ISMIR 2000 (Ply-
mouth, Massachusetts).

Becker, Judith and Alton Becker (1979). “A Grammar of the Musical Genre Srepe-
gan”. In: Journal of Music Theory 23.1, pp. 1–43.

Bel, Bernard and Jim Kippen (1992). “Modeling Music with Grammars: Formal
Language Representation in the Bol Processor”. In: Computer Representations
and Models in Music. Ed. by A. Marsden and A. Pople. London: Academic Press,
pp. 207–238.

Bellgard, Matthew I. and Chi Ping Tsang (1994). “Harmonizing Music the Boltz-
mann Way”. In: Connection Science 6.2-3, pp. 281–297.

Bellini, Pierfrancesco et al. (2006). “Using MPEG Symbolic Music Representation
in MPEG-4”. In: Proceedings of the 2nd International Conference on Automated
Production of Cross Media Content for Multi-channel Distribution, Axmedis
2006. Firenze University Press, pp. 73–77.

Bianchi, Filippo M. et al. (2017). Recurrent Neural Networks for Short-Term Load
Forecasting: An Overview and Comparative Analysis. Springer.

Biles, John A. (1994). “GenJam: A Genetic Algorithm for Generating Jazz Solos”.
In: Proceedings of the International Computer Music Conference, ICMC 1994
(Aarhus, Denmark), pp. 131–137.

Biles, John A. (2007a). “Evolutionary Computation for Musical Tasks”. In: Evolu-
tionary Computer Music. Ed. by Eduardo R. Miranda and John A. Biles. London:
Springer. Chap. 2, pp. 28–51.

Biles, John A. (2007b). “Improvizing with Genetic Algorithms: GenJam”. In: Evo-
lutionary Computer Music. Ed. by Eduardo R. Miranda and John A. Biles.
Springer. Chap. 7, pp. 137–169.

Blacking, John (1970). “Tonal Organization in the Music of Two Venda Initiation
Schools”. In: Ethnomusicology 14.1, pp. 1–56. issn: 00141836.

Bloch, Joshua (2018). Effective Java. 3rd ed. Addison-Wesley. isbn: 978-0134685991.
Boden, Margaret A. (1994). “Creativity and Computers”. In: Artificial Intelligence

and Creativity: An Interdisciplinary Approach. Ed. by T. Dartnall. Space Tech-
nology Library. Dordrecht: Kluwer Academic Publishers, pp. 3–26. isbn: 9780792330615.

Boden, Margaret A. (2004). The Creative Mind: Myths and Mechanisms. Routledge.
isbn: 9780415314527.

259

Boden, Margaret A. (2010). Creativity and Art: Three Roads to Surprise. Oxford
University Press. isbn: 9780199659395.

Brooks, Frederick P. et al. (1957). “An Experiment in Musical Composition”. In:
IRE Transactions on Electronic Computers EC-6.3, pp. 175–182.

Broze, Yuri and Daniel Shanahan (2012). The iRb Corpus in **jazz format. url:
https://csml.som.ohio-state.edu/home/index.php/iRb_Jazz_Corpus

(visited on 07/23/2018).
Burnson, William A. et al. (2010). “Automatic Notation of Computer-Generated

Scores for Instruments, Voices and Electro-Acoustic Sounds”. In: Proceedings of
the International Computer Music Conference, ICMC 2010 (New York, USA).

Butchers, Christopher (1968). “The Random Arts: Xenakis, Mathematics and Mu-
sic”. In: Tempo 85, pp. 2–5.

Camilleri, Lelio (1982). “A Grammar of the Melodies of Schubert’s Lieder”. In: Musi-
cal Grammars and Computer Analysis. Ed. by Mario Baroni and Laura Callegari.
Florence, Italy: Casa Editrice Leo S. Olschki, pp. 229–236. isbn: 9788822232298.

Chai, Wei and Barry Vercoe (2001). “Folk Music Classification Using Hidden Markov
Models”. In: Proceedings of the International Conference on Artificial Intelli-
gence. Vol. 6. 4.

Cheng, Heng-Tze et al. (2008). “Automatic Chord Recognition for Music Classifica-
tion and Retrieval”. In: IEEE International Conference on Multimedia and Expo,
ICME 2008 (Hannover, Germany), pp. 1505–1508.

Choi, Keunwoo et al. (2016). “Text-based LSTM Networks for Automatic Music
Composition”. In: Proceedings of the 1st Conference on Computer Simulation of
Musical Creativity (Huddersfield, UK).

Chomsky, Noam (1957). Syntactic Structures. Reprinted by Walter de Gruyter,
Berlin, 2002. Den Haag: Mouton. isbn: 9783110218329.

Chomsky, Noam (1959). “On Certain Formal Properties of Grammars”. In: Infor-
mation and Control 2.2, pp. 137–167. issn: 0019-9958.

Cilibrasi, Rudi and Paul M.B. Vitányi (2005). “Clustering by Compression”. In:
IEEE Transactions on Information Theory 51.4, pp. 1523–1545.

Cilibrasi, Rudi, Paul M.B. Vitányi, and Ronald de Wolf (2004). “Algorithmic Clus-
tering of Music Based on String Compression”. In: Computer Music Journal 28.4,
pp. 49–67.

Coca, Andrés E. et al. (2013). “Computer-aided Music Composition with LSTM
Neural Network and Chaotic Inspiration”. In: Proceedings of the International
Joint Conference on Neural Networks, IJCNN 2013 (Dallas, Texas). IEEE, pp. 270–
276.

260

https://csml.som.ohio-state.edu/home/index.php/iRb_Jazz_Corpus

Coello Coello, Carlos A. and Gary B. Lamont, eds. (2004). Applications of Multi-
objective Evolutionary Algorithms. Vol. 1. Advances in Natural Computation.
World Scientific. isbn: 9789812567796.

Collins, N. (2010). Introduction to Computer Music. Chichester: John Wiley & Sons.
isbn: 9780470714553.

Cooper, G. and L.B. Meyer (1960). The Rhythmic Structure of Music. Phoenix
Books. University of Chicago Press. isbn: 9780226115221.

Cope, David (1991). Computers and Musical Style. Oxford University Press. isbn:
0-19-816274-X.

Cope, David (1996). Experiments in Musical Intelligence. Middleton, Wisconsin:
A-R Editions.

Cope, David (2000). The Algorithmic Composer. Madison, Wisconsin: A-R Editions.
isbn: 9780895794543.

Cope, David (2004). Virtual Music: Computer Synthesis of Musical Style. Cam-
bridge, Massachusetts: MIT Press. isbn: 9780262532617.

Cope, David (2005). Computer Models of Musical Creativity. Cambridge, Massachusetts:
MIT Press. isbn: 0-262-03338-0.

Cope, David (2009). Hidden Structure: Music Analysis Using Computers. Middleton,
Wisconsin: A-R Editions. isbn: 9780895796400.

Cunha, Uraquitan Sidney and Geber Ramalho (1999). “An Intelligent Hybrid Model
for Chord Prediction”. In: Organised Sound 4.2, pp. 115–119.

Cuthbert, Michael Scott and Christopher Ariza (2010). “music21: A Toolkit for
Computer-Aided Musicology and Symbolic Music Data”. In: Proceedings of the
11th International Society for Music Information Retrieval Conference, ISMIR
2010 (Utrecht, The Netherlands), pp. 637–642.

Cuthbert, Michael Scott, Christopher Ariza, Jose Cabal-Ugaz, et al. (2011). “Hid-
den Beyond MIDI’s Reach: Feature Extraction and Machine Learning with Rich
Symbolic Formats in music21”. In: Proceedings of the 4th International Workshop
on Machine Learning and Music, held in Conjunction with the 25th Annual Con-
ference on Neural Information Processing Systems, NIPS 2011 (Sierra Nevada,
Spain).

Cuthbert, Michael Scott, Christopher Ariza, and Lisa Friedland (2011). “Feature
Extraction and Machine Learning on Symbolic Music using the music21 Toolkit”.
In: Proceedings of the 12th International Society for Music Information Retrieval
Conference, ISMIR 2011 (Miami, Florida), pp. 387–392.

Dannenberg, Roger et al. (1997). “A Machine Learning Approach to Musical Style
Recognition”. In: Proceedings of the International Computer Music Conference,
ICMC 1997 (Thessaloniki, Greece).

261

Darwin, Charles (1859). On the Origin of Species by Means of Natural Selection,
or the Preservation of Favoured Races in the Struggle for Life. London: John
Murray.

Deza, Michel Marie and Elena Deza (2016). Encyclopedia of Distances. 4th ed.
Berlin, Heidelberg: Springer. isbn: 9783662443422.

Eck, Douglas and Jasmin Lapalme (2008). Learning Musical Structure Directly from
Sequences of Music. Tech. rep. 1300. University of Montreal, Department of Com-
puter Science.

Eck, Douglas and Jürgen Schmidhuber (2002a). A First Look at Music Composi-
tion Using LSTM Recurrent Neural Networks. Tech. rep. IDSIA-07-02. Manno,
Switzerland: Istituto Dalle Molle di studi sull’intelligenza artificiale.

Eck, Douglas and Jürgen Schmidhuber (2002b). “Finding Temporal Structure in
Music: Blues Improvisation with LSTM Recurrent Networks”. In: Proceedings of
the 12th IEEE Workshop on Neural Networks for Signal Processing, pp. 747–756.

Eigenfeldt, Arne (2009). “The Evolution of Evolutionary Software: Intelligent Rhythm
Generation in Kinetic Engine”. In: Applications of Evolutionary Computing. Ed.
by Mario Giacobini et al. Berlin, Heidelberg: Springer, pp. 498–507. isbn: 978-
3-642-01129-0.

Eigenfeldt, Arne (2012). “Corpus-based Recombinant Composition Using a Genetic
Algorithm”. In: Soft Computing 16.12, pp. 2049–2056. issn: 1433-7479. doi: 10.
1007/s00500-012-0871-z.

Eigenfeldt, Arne and Philippe Pasquier (2012). “Populations of Populations: Com-
posing with Multiple Evolutionary Algorithms”. In: Proceedings of the First In-
ternational Conference on Evolutionary and Biologically Inspired Music, Sound,
Art and Design, EvoMUSART 2012 (Málaga, Spain). Ed. by Penousal Machado
et al. Berlin, Heidelberg: Springer, pp. 72–83. isbn: 978-3-642-29142-5.

Fenwick, Peter (2014). Introduction to Computer Data Representation. Bentham
Science Publishers. isbn: 9781608058822.

Flanagan, David (2005). Java in a Nutshell. O’Reilly. isbn: 9780596007737.
Fogel, Lawrence J. et al. (1966). Artificial Intelligence Through Simulated Evolution.

New York: John Wiley & Sons.
Fox, Charles (2006). “Genetic Hierarchical Music Structures”. In: Proceedings of the

19th International FLAIRS Conference. Menlo Park, California: AAAI Press.
Friedberg, Richard M. (1958). “A Learning Machine: Part I”. In: IBM Journal of

Research and Development 2.1, pp. 2–13. issn: 0018-8646. doi: 10.1147/rd.
21.0002.

262

https://doi.org/10.1007/s00500-012-0871-z
https://doi.org/10.1007/s00500-012-0871-z
https://doi.org/10.1147/rd.21.0002
https://doi.org/10.1147/rd.21.0002

Friedberg, Richard M. et al. (1959). “A Learning Machine: Part II”. In: IBM Journal
of Research and Development 3.3, pp. 282–287. issn: 0018-8646. doi: 10.1147/
rd.33.0282.

Fu, Zhouyu et al. (2011). “A Survey of Audio-based Music Classification and Anno-
tation”. In: IEEE Transactions on Multimedia 13.2, pp. 303–319.

Geiringer, Karl (1969). “Der Einfluss der Aufklärung auf J. S. Bachs künstlerisches
Denken”. In: Studia Musicologica Academiae Scientiarum Hungaricae 11.1/4,
pp. 201–206. issn: 15882888.

Gentle, James E. (2006). Random Number Generation and Monte Carlo Methods.
New York: Springer. isbn: 9780387216102.

Ghanea-Hercock, Robert (2003). Applied Evolutionary Algorithms in Java. Springer.
isbn: 9780387955681.

Gibson, P.M. and J.A. Byrne (1991). “NEUROGEN: Musical Composition using
Genetic Algorithms and Cooperating Neural Networks”. In: Proceedings of the
Second International IEEE Conference on Artifical Neural Networks, pp. 309–
313.

Glashoff, Klaus (2003). Gottfried Wilhelm Leibniz – die Utopie der Denkmaschine.
url: http://s371741603.online.de/glashoffnet/logicglashoffnet/Text
e/GottfriedWilhelmLeibniz6.pdf (visited on 05/13/2018).

Goldstein, E.B. (2013). Sensation and Perception. Cengage Learning. isbn: 9781133958499.
Good, Michael (2001). “MusicXML: An Internet-Friendly Format for Sheet Music”.

In: Proceedings of the International XML Conference and Expo, XMLEdge 2001
(Santa Clara, California).

Goodfellow, Ian et al. (2016). Deep Learning. Cambridge, Massachusetts: MIT Press.
isbn: 978-0-262-03561-3.

Han, Te Sun and Kingo Kobayashi (2007). Mathematics of Information and Coding.
Providence, Rhode Island: American Mathematical Society. isbn: 9780821842560.

Hankerson, Darrel R. et al. (2003). Introduction to Information Theory and Data
Compression. 2nd ed. Boca Raton, Florida: CRC Press. isbn: 9781584883135.

Hawthorne, Curtis et al. (2018). “Onsets and Frames: Dual-Objective Piano Tran-
scription”. In: Proceedings of the 19th International Society for Music Informa-
tion Retrieval Conference, ISMIR 2018 (Paris, France).

Hewlett, Walter B. (1997). “MuseData: Multipurpose Representation”. In: Beyond
MIDI. Ed. by Eleanor Selfridge-Field. Cambridge, Massachusetts: MIT Press,
pp. 402–447.

Hild, Hermann et al. (1992). “HARMONET: A Neural Net for Harmonizing Chorales
in the Style of J.S. Bach”. In: Advances in Neural Information Processing Sys-
tems, pp. 267–274.

263

https://doi.org/10.1147/rd.33.0282
https://doi.org/10.1147/rd.33.0282
http://s371741603.online.de/glashoffnet/logicglashoffnet/Texte/GottfriedWilhelmLeibniz6.pdf
http://s371741603.online.de/glashoffnet/logicglashoffnet/Texte/GottfriedWilhelmLeibniz6.pdf

Hiller, Lejaren A. and Leonard M. Isaacson (1958). “Musical Composition with a
High-Speed Digital Computer”. In: Journal of the Audio Engineering Society 6.3,
pp. 154–160.

Hiller, Lejaren A. and Leonard M. Isaacson (1959). Experimental Music: Composi-
tion with an Electronic Computer. McGraw-Hill.

Hinton, Geoffrey E. and Terrence J. Sejnowski (1986). “Learning and Releaming in
Boltzmann Machines”. In: Parallel Distributed Processing: Explorations in the
Microstructure of Cognition 1.282-317, p. 2.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:
Neural Computation 9.8, pp. 1735–1780.

Hofmann, David M. (2015). “A Genetic Programming Approach to Generating Mu-
sical Compositions”. In: Proceedings of the 4th International Conference on Evo-
lutionary and Biologically Inspired Music, Sound, Art and Design, EvoMUSART
2015 (Copenhagen, Denmark). Vol. 9027. LNCS. Springer, pp. 89–100.

Hofmann, David M. (2016). “Introducing a Context-based Model and Language
for Representation, Transformation, Visualization, Analysis and Generation of
Music”. In: Proceedings of the 42nd International Computer Music Conference,
ICMC 2016. Ed. by Hans Timmermans. Utrecht, The Netherlands: HKU Uni-
versity of the Arts, pp. 381–387.

Hofstadter, Douglas R. (1979). Gödel, Escher, Bach: An Eternal Golden Braid.
Twentieth-anniversary Edition. New York: Basic Books.

Holland, John H. (1975). Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control and Artificial Intelligence.
Cambridge, Massachusetts: MIT Press. isbn: 0262082136.

Holtzman, Steven R. (1980). “A Generative Grammar Definition Language for Mu-
sic”. In: Interface 9.1, pp. 1–48. doi: 10.1080/09298218008570279.

Hoos, Holger H., Keith A. Hamel, et al. (1998). “The GUIDO Notation Format —
A Novel Approach for Adequately Representing Score-Level Music”. In: Proceed-
ings of the International Computer Music Conference, ICMC 1998 (Ann Arbor,
Michigan), pp. 451–454.

Hoos, Holger H., Kai Renz, et al. (2001). “GUIDO/MIR — An Experimental Musical
Information Retrieval System based on GUIDO Music Notation”. In: Proceedings
of the 2nd International Symposium on Music Information Retrieval, ISMIR
2001 (Bloomington, Indiana), pp. 41–50.

Hopfield, John J. (1982). “Neural Networks and Physical Systems with Emergent
Collective Computational Abilities”. In: Proceedings of the National Academy of
Sciences 79.8, pp. 2554–2558.

264

https://doi.org/10.1080/09298218008570279

Horáček, Petr et al. (2011). Augmented Transition Networks. url: https://pdfs.
semanticscholar.org/presentation/6ef1/2e49ce3f3c33c5c475d5b025995b

0e1c423d.pdf (visited on 05/09/2018).
Horner, Andrew and David E. Goldberg (1991). “Genetic Algorithms and Computer-

Assisted Music Composition”. In: Proceedings of the Fourth International Con-
ference on Genetic Algorithms. Ed. by R. Belew and L. Booker. San Mateo,
California: Morgan Kaufmann, pp. 437–441.

Hughes, David W. (1988). “Deep Structure and Surface Structure in Javanese Music:
A Grammar of Gendhing Lampah”. In: Ethnomusicology 32.1, pp. 23–74. issn:
00141836.

Hughes, David W. (1991). “Grammars of Non-Western Musics: A Selective Survey”.
In: Representing Musical Structure. Ed. by P. Howell et al. Cognitive Science
Series. London: Academic Press. isbn: 9780123571717.

Huron, David (1995). The Humdrum User Guide. url: http://www.humdrum.org/
guide/ (visited on 04/10/2018).

Huron, David (2002). “Music Information Processing Using the Humdrum Toolkit:
Concepts, Examples, and Lessons”. In: Computer Music Journal 26.2, pp. 11–26.
doi: 10.1162/014892602760137158.

Huron, David (2006). Sweet Anticipation: Music and the Psychology of Expectation.
MIT Press. isbn: 9780262083454.

Husbands, Phil et al. (2007). “An Introduction to Evolutionary Computing for Musi-
cians”. In: Evolutionary Computer Music. Ed. by Eduardo R. Miranda and John
A. Biles. London: Springer, pp. 1–27. isbn: 978-1-84628-600-1. doi: 10.1007/
978-1-84628-600-1_1.

IEEE, Computer Society Standards Committee (1985). IEEE Standard 754-1985
for Binary Floating-Point Arithmetic. Institute of Electrical and Electronics En-
gineers (IEEE). doi: 10.1109/ieeestd.1985.82928.

Jacob, Bruce L. (1995). “Composing with Genetic Algorithms”. In: Proceedings of
the International Computer Music Conference, ICMC 1995 (Banff, Alberta,
Canada), pp. 452–455.

Jacob, Bruce L. (1996). “Algorithmic Composition as a Model of Creativity”. In:
Organised Sound 1(3), pp. 157–165.

Johanson, Brad and Riccardo Poli (1998). “GP-Music: An Interactive Genetic Pro-
gramming System for Music Generation with Automated Fitness Raters”. In:
Proceedings of the Third Annual Conference on Genetic Programming, GP’98.
Ed. by John R. Koza et al. San Francisco, California: Morgan Kaufmann, pp. 181–
186.

265

https://pdfs.semanticscholar.org/presentation/6ef1/2e49ce3f3c33c5c475d5b025995b0e1c423d.pdf
https://pdfs.semanticscholar.org/presentation/6ef1/2e49ce3f3c33c5c475d5b025995b0e1c423d.pdf
https://pdfs.semanticscholar.org/presentation/6ef1/2e49ce3f3c33c5c475d5b025995b0e1c423d.pdf
http://www.humdrum.org/guide/
http://www.humdrum.org/guide/
https://doi.org/10.1162/014892602760137158
https://doi.org/10.1007/978-1-84628-600-1_1
https://doi.org/10.1007/978-1-84628-600-1_1
https://doi.org/10.1109/ieeestd.1985.82928

Johnson-Laird, Philip N. (1991). “Jazz Improvisation: A Theory at the Computa-
tional Level”. In: Representing Musical Structure. Ed. by P. Howell et al. London:
Academic Press. isbn: 9780123571717.

Johnson-Laird, Philip N. (2002). “How Jazz Musicians Improvise”. In: Music Per-
ception: An Interdisciplinary Journal 19.3, pp. 415–442.

Jones, Kevin (1981). “Compositional Applications of Stochastic Processes”. In: Com-
puter Music Journal 5.2, pp. 45–61. issn: 15315169.

Kiernan, Francis J. (2000). “Score-based Style Recognition Using Artificial Neural
Networks”. In: Proceedings of the First International Conference on Music In-
formation Retrieval, ISMIR 2000 (Plymouth, Massachusetts).

Koenig, Gottfried Michael (1971). “Serielle und aleatorische Verfahren in der elek-
tronischen Musik”. In: Ästhetische Praxis. Texte zur Musik 2, pp. 1962–1967.

Kohonen, Teuvo (1982). “Self-organized Formation of Topologically Correct Feature
Maps”. In: Biological Cybernetics 43.1, pp. 59–69.

Kohonen, Teuvo (1989). “A Self-learning Musical Grammar, or ‘Associative Memory
of the Second Kind’”. In: Proceedings of the International Joint Conference on
Neural Networks, IJCNN 1989 (Washington, D.C.). San Diego, California: IEEE,
pp. 1–5.

Kostelanetz, Richard (2003). Conversing with Cage. Second Edition. Routledge.
isbn: 9780415937924.

Koza, John R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press. isbn: 0-262-11170-5.

Krawczak, Maciej (2013). Multilayer Neural Networks: A Generalized Net Perspec-
tive. Studies in Computational Intelligence. Springer International Publishing.
isbn: 9783319002484.

Kumar, Rajendra (2010). Theory Of Automata, Languages and Computation. New
Delhi: Tata McGraw-Hill. isbn: 9780070702042.

Lerdahl, Fred (2001). Tonal Pitch Space. Oxford University Press. isbn: 9780195346374.
Lerdahl, Fred and Ray Jackendoff (1983). A Generative Theory of Tonal Music.

MIT Press. isbn: 9780262260916.
Li, Ming, Xin Chen, et al. (2004). “The Similarity Metric”. In: IEEE transactions

on Information Theory 50.12, pp. 3250–3264.
Li, Ming and Paul Vitányi (2013). An Introduction to Kolmogorov Complexity and

its Applications. New York: Springer. isbn: 9781475738605.
Loughran, R. et al. (2015). “Tonality Driven Piano Compositions with Grammat-

ical Evolution”. In: IEEE Congress on Evolutionary Computation, CEC 2015,
pp. 2168–2175. doi: 10.1109/CEC.2015.7257152.

266

https://doi.org/10.1109/CEC.2015.7257152

Luke, Sean (2013). Essentials of Metaheuristics. Second Edition. Lulu. url: http:
//cs.gmu.edu/~sean/book/metaheuristics/.

Manaris, Bill, Penousal Machado, et al. (2005). “Developing Fitness Functions for
Pleasant Music: Zipf’s Law and Interactive Evolution Systems”. In: EvoWork-
shops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and
EvoSTOC (Lausanne, Switzerland). Vol. 3449. LNCS, pp. 498–507.

Manaris, Bill, Patrick Roos, et al. (2007). “A Corpus-based Hybrid Approach to
Music Analysis and Composition”. In: Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence (Vancouver, British Columbia, Canada).
Menlo Park, California: AAAI Press, pp. 839–845. isbn: 978-1-57735-323-2.

Manaris, Bill, Dallas Vaughan, et al. (2003). “Evolutionary Music and the Zipf-
Mandelbrot Law: Developing Fitness Functions for Pleasant Music”. In: EvoWork-
shops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoS-
TIM (Essex, UK). Vol. 2611. LNCS. Springer, pp. 522–534.

Mandelbrot, Benoît B. (2003). “Multifractal Power Law Distributions: Negative and
Critical Dimensions and other ‘Anomalies,’ Explained by a Simple Example”. In:
Journal of Statistical Physics 110.3-6, pp. 739–774.

Marchal, Benoît (2002). XML by Example. 2nd ed. Que. isbn: 9780789725042.
McCormack, Jon and Mark d’Inverno, eds. (2012). Computers and Creativity. Springer.

isbn: 9783642317279.
McDonald, Chris (2000). “Exploring modal subversions in alternative music”. In:

Popular Music 19.3, pp. 355–363.
Miranda, Eduardo R. (2001). Composing Music with Computers. Routledge. isbn:

9781136120930.
Mozer, Michael (1994). “Neural Network Music Composition by Prediction: Explor-

ing the Benefits of Psychoacoustic Constraints and Multi-scale Processing”. In:
Connection Science 6 (1), pp. 247–280.

Müller, Meinard (2015). Fundamentals of Music Processing: Audio, Analysis, Algo-
rithms, Applications. Springer. isbn: 9783319219455.

Neapolitan, Richard E. (2015). Foundations of Algorithms. 5th ed. Burlington, Mas-
sachusetts: Jones & Bartlett Learning. isbn: 9781284049206.

Nevill-Manning, Craig G. and Ian H. Witten (1997). “Identifying Hierarchical Struc-
ture in Sequences: A Linear-time Algorithm”. In: Journal of Artificial Intelligence
Research 7, pp. 67–82.

Nienhuys, Han-Wen and Jan Nieuwenhuizen (2003). “LilyPond, a System for Au-
tomated Music Engraving”. In: Proceedings of the XIV Colloquium on Musical
Informatics. Ed. by Nicola Bernardini et al. Florence, Italy: Associazione Italiana
di Musica Informatica, pp. 167–172.

267

http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/

Nierhaus, Gerhard (2009). Algorithmic Composition: Paradigms of Automated Music
Generation. Vienna, Austria: Springer. isbn: 9783211755402.

Nilsson, Nils J. (1971). Problem-Solving Methods in Artificial Intelligence. McGraw-
Hill.

Ochoa, Gabriela (1998). “On Genetic Algorithms and Lindenmayer Systems”. In:
Parallel Problem Solving from Nature — PPSN V (Amsterdam, The Nether-
lands). Ed. by Agoston E. Eiben et al. Berlin, Heidelberg: Springer, pp. 335–
344.

Ockelford, Adam (2016). Repetition in Music: Theoretical and Metatheoretical Per-
spectives. Routledge. isbn: 978-0-7546-3573-4.

Olson, Harry F. (1967). Music, Physics and Engineering. 2nd ed. Originally pub-
lished under the title Musical Engineering by McGraw-Hill Book Company in
1952. New York: Dover Publications. isbn: 9780486217697.

Oore, Sageev et al. (2017). “Learning to Create Piano Performances”. In: Proceedings
of the Thirty-first Annual Conference on Neural Information Processing Systems,
NIPS 2017 (Long Beach, California).

Ortega, Alfonso et al. (2002). “Automatic Composition of Music by Means of Gram-
matical Evolution”. In: Proceedings of the 2002 Conference on APL. New York:
ACM Press, pp. 148–155.

Pachet, François (1999). “Surprising Harmonies”. In: International Journal of Com-
puting Anticipatory Systems 4, pp. 139–161.

Pachet, François (2012). “Musical Virtuosity and Creativity”. In: Computers and
Creativity. Berlin, Heidelberg: Springer. Chap. 5, pp. 115–146.

Papadopoulos, George and Geraint Wiggins (1998). “A Genetic Algorithm for the
Generation of Jazz Melodies”. In: Proceedings of STeP 98.

Patel, Aniruddh D. (2008). Music, Language, and the Brain. New York: Oxford
University Press. isbn: 9780195123753.

Patterson, David A. and John L. Hennessy (2008). Computer Organization and De-
sign: The Hardware/Software Interface. Elsevier Science. isbn: 9780080922812.

Pelinski, Ramon (1982). “A Generative Grammar of Personal Eskimo Songs”. In:
Musical Grammars and Computer Analysis. Ed. by Mario Baroni and Laura
Callegari. Florence, Italy: Casa Editrice Leo S. Olschki, pp. 229–236. isbn:
9788822232298.

Poli, Riccardo et al. (2008). A Field Guide to Genetic Programming. Lulu. isbn:
978-1-4092-0073-4. url: http://www.gp-field-guide.org.uk.

Polito, John et al. (1997). “Musica Ex Machina: Composing 16th-century Counter-
point with Genetic Programming and Symbiosis”. In: Proceedings of the Sixth

268

http://www.gp-field-guide.org.uk

Annual Conference on Evolutionary Programming (Indianapolis, Indiana). Ed.
by Peter J. Angeline et al. Springer.

Pollastri, Emanuele and Giuliano Simoncelli (2001). “Classification of Melodies by
Composer with Hidden Markov Models”. In: First International Conference on
Web Delivering of Music. IEEE, pp. 88–95.

Ponsford, Dan et al. (1999). “Statistical Learning of Harmonic Movement”. In: Jour-
nal of New Music Research 28, pp. 150–177.

Priddy, Kevin L. and Paul E. Keller (2005). Artificial Neural Networks: An Intro-
duction. Bellingham, Washington: International Society for Optical Engineering.
isbn: 9780819459879.

Pruim, Randall (2018). Foundations and Applications of Statistics: An Introduction
Using R. Second Edition. Providence, Rhode Island: American Mathematical
Society. isbn: 9781470428488.

Prusinkiewicz, Przemyslaw and Aristid Lindenmayer (1990). The Algorithmic Beauty
of Plants. New York: Springer. isbn: 9781461384762.

Putnam, Jeffrey (1996). “A Grammar-Based Genetic Programming Technique Ap-
plied to Music Generation”. In: Proceedings of the Fifth Annual Conference on
Evolutionary Programming (San Diego, California). Cambridge, Massachusetts:
MIT Press, pp. 277–286.

Rader, Gary M. (1974). “A Method for Composing Simple Traditional Music by
Computer”. In: Communications of the ACM 17.11, pp. 631–638.

Ralley, David (1995). “Genetic Algorithm as a Tool for Melodic Development”.
In: Proceedings of the International Computer Music Conference, ICMC 1995
(Banff, Alberta, Canada), pp. 501–502.

Ramalho, Geber and Jean-Gabriel Ganascia (1994). “Simulating Creativity in Jazz
Performance”. In: Proceedings of the Twelfth National Conference on Artificial
Intelligence, AAAI’94 (Seattle, Washington). Menlo Park, California: AAAI
Press, pp. 108–113.

Randel, Don M. (2003). The Harvard Dictionary of Music. 4th ed. Harvard Univer-
sity Press Reference Library. Belknap Press of Harvard University Press. isbn:
9780674011632.

Rechenberg, Ingo (1973). Evolutionsstrategie — Optimierung technisher Systeme
nach Prinzipien der biologischen Evolution. Stuttgart: Frommann-Holzboog.

Roads, Curtis (1979). “Grammars as Representations for Music”. In: Computer Mu-
sic Journal 3.1, pp. 48–55.

Roberts, Adam et al. (2018). “A Hierarchical Latent Vector Model for Learning
Long-Term Structure in Music”. In: Proceedings of the Thirty-fifth International
Conference on Machine Learning, ICML 2018 (Stockholm, Sweden).

269

Rohrmeier, Martin (2011). “Towards a Generative Syntax of Tonal Harmony”. In:
Journal of Mathematics and Music 5.1, pp. 35–53.

Romero, Juan J. and Penousal Machado, eds. (2008). The Art of Artificial Evolution:
A Handbook on Evolutionary Art and Music. Berlin, Heidelberg: Springer. isbn:
978-3-540-72876-4.

Rumelhart, David E. et al. (1986). “Learning Representations by Back-propagating
Errors”. In: Nature 323, pp. 533–536.

Sadie, Stanley and John Tyrrell, eds. (2001). The New Grove Dictionary of Music
and Musicians. Second Edition. Vol. 6. Macmillan Publishers.

Safranek, Milos (2013). Bohuslav Martinu — The Man and His Music. Read Books
Limited. isbn: 9781447493044.

Saichev, Alexander I. et al. (2009). Theory of Zipf ’s Law and Beyond. Berlin, Hei-
delberg: Springer. isbn: 9783642029462.

Salomon, David (2007). Data Compression: The Complete Reference. Fourth Edi-
tion. London: Springer. isbn: 9781846286032.

Sampaio, Marcos da Silva et al. (2013). “The Implementation of a Contour Module
for Music21”. In: ART Music Review 24.

Sapp, Craig Stuart et al. (2004). “Search Effectiveness Measures for Symbolic Mu-
sic Queries in Very Large Databases.” In: Proceedings of the 5th International
Conference on Music Information Retrieval, ISMIR 2004 (Barcelona, Spain).

Sarker, Ruhul and Carlos A. Coello Coello (2003). “Assessment Methodologies for
Multiobjective Evolutionary Algorithms”. In: Evolutionary Optimization. Springer,
pp. 177–195.

Scaringella, Nicolas et al. (2006). “Automatic Genre Classification of Music Content:
A Survey”. In: IEEE Signal Processing Magazine 23.2, pp. 133–141.

Schenker, Heinrich (1935). Der freie Satz. Vol. 3. Neue musikalische Theorien und
Phantasien. Vienna: Universal-Edition.

Schmeder, Andrew et al. (2010). “Best Practices for Open Sound Control”. In: Pro-
ceedings of the 2010 Linux Audio Conference (Utrecht, the Netherlands).

Shao, Xi et al. (2004). “Unsupervised Classification of Music Genre using Hidden
Markov Model”. In: IEEE International Conference on Multimedia and Expo,
ICME’04 (Taipei, Taiwan). Vol. 3. IEEE, pp. 2023–2026.

Simon, Herbert A. and Allen Newell (1971). “Human Problem Solving: The State
of the Theory in 1970”. In: American Psychologist 26.2, pp. 145–159.

Sivanandam, S.N. and S.N. Deepa (2007). Introduction to Genetic Algorithms. Berlin;
Heidelberg: Springer. isbn: 9783540731900.

Spector, Lee and Adam Alpern (1994). “Criticism, Culture, and the Automatic
Generation of Artworks”. In: Proceedings of the Twelfth National Conference on

270

Artificial Intelligence, AAAI’94 (Seattle, Washington). Menlo Park, California:
AAAI Press.

Spector, Lee and Adam Alpern (1995). “Induction and Recapitulation of Deep Mu-
sical Structure”. In: Proceedings of International Joint Conference on Artificial
Intelligence, IJCAI 1995 (Montreal, Quebec, Canada), pp. 20–25.

Steedman, Mark J. (1984). “A Generative Grammar for Jazz Chord Sequences”. In:
Music Perception: An Interdisciplinary Journal 2.1, pp. 52–77. issn: 15338312.

Steinberg, Dave et al. (2008). EMF: Eclipse Modeling Framework. 2nd ed. Addison-
Wesley. isbn: 9780132702218.

Stewart, William J. (2009). Probability, Markov Chains, Queues, and Simulation:
The Mathematical Basis of Performance Modeling. Princeton University Press.
isbn: 9781400832811.

Storer, James A. (2002). An Introduction to Data Structures and Algorithms. Springer.
isbn: 9781461200758.

Sundberg, Johan and Björn Lindblom (1976). “Generative Theories in Language
and Music Descriptions”. In: Cognition 4.1, pp. 99–122.

Svegliato, Justin (2017). Can a deep neural network compose music? url: https:
//towardsdatascience.com/can-a-deep-neural-network-compose-music-

f89b6ba4978d (visited on 07/16/2018).
Temperley, David and Daniel Sleator (1999). “Modeling Meter and Harmony: A

Preference-Rule Approach”. In: Computer Music Journal 23.1, pp. 10–27. doi:
10.1162/014892699559616.

Thywissen, Kurt (1996). “GeNotator: An Environment for Investigating the Appli-
cation of Genetic Algorithms in Computer Assisted Composition”. In: Proceed-
ings of the International Computer Music Conference, ICMC 1996 (Hong Kong,
China).

Thywissen, Kurt (1999). “GeNotator: An Environment for Exploring the Application
of Evolutionary Techniques in Computer Assisted Composition”. In: Organised
Sound 4 (2), pp. 127–133.

Tillmann, Barbara et al. (2000). “Implicit Learning of Tonality: A Self-organizing
Approach”. In: Psychological Review 107.4, p. 885.

Todd, Peter M. (1989). “A Connectionist Approach to Algorithmic Composition”.
In: Computer Music Journal 13.4, pp. 27–43.

Troche, Sarah (2018). “Cage as Frankenstein: Monstrosity and Indeterminacy of
Performance”. In: Tacet - Experimental Music Review. Ed. by Matthieu Saladin.
Les presses du réel. isbn: 9782840664734.

271

https://towardsdatascience.com/can-a-deep-neural-network-compose-music-f89b6ba4978d
https://towardsdatascience.com/can-a-deep-neural-network-compose-music-f89b6ba4978d
https://towardsdatascience.com/can-a-deep-neural-network-compose-music-f89b6ba4978d
https://doi.org/10.1162/014892699559616

Typke, Rainer et al. (2005). “A Survey of Music Information Retrieval Systems”. In:
Proceedings of the 6th International Conference on Music Information Retrieval,
ISMIR 2005 (London, UK), pp. 153–160.

Veerarajan, T (2002). Probability, Statistics And Random Processes. New Delhi:
Tata McGraw-Hill. isbn: 9780070494824.

Viro, Vladimir (2011). “Peachnote: Music Score Search and Analysis Platform”. In:
Proceedings of the 12th International Society for Music Information Retrieval
Conference, ISMIR 2011 (Miami, Florida), pp. 359–362.

Walshaw, Chris (2011). The abc Music Standard 2.1. url: http://abcnotation.
com/wiki/abc:standard:v2.1 (visited on 04/14/2018).

Warford, J. Stanley (2017). Computer Systems. 5th ed. Jones & Bartlett Learning.
isbn: 9781284079630.

Waschka II, Rodney (2007). “Composing with Genetic Algorithms: GenDash”. In:
Evolutionary Computer Music. Ed. by Eduardo R. Miranda and John A. Biles.
London: Springer. Chap. 6, pp. 117–136.

Weihs, Claus et al. (2016). Music Data Analysis: Foundations and Applications.
CRC Press. isbn: 9781315353838.

White, Harvey E. and Donald H. White (2014). Physics and Music: The Science of
Musical Sound. Originally published by Saunders College / Holt, Rinehart and
Winston, Philadelphia, in 1980. Dover Publications. isbn: 9780486794006.

Wilson, Scott et al. (2011). The SuperCollider Book. The MIT Press. isbn: 9780262232692.
Wright, David (2009). Mathematics and Music. Providence, Rhode Island: American

Mathematical Society. isbn: 9780821848739.
Xenakis, Iannis (1966). “The Origins of Stochastic Music”. In: Tempo 78, pp. 9–12.
Xenakis, Iannis (1992). Formalized Music: Thought and Mathematics in Composi-

tion. Pendragon Press. isbn: 9781576470794.
Xu, Changsheng et al. (2005). “Automatic Music Classification and Summarization”.

In: IEEE Transactions on Speech and Audio Processing 13.3, pp. 441–450.
Yu, Tina (1999). “Structure Abstraction and Genetic Programming”. In: Proceed-

ings of the 1999 Congress on Evolutionary Computation, CEC’99 (Washington,
D.C.). IEEE, pp. 652–659.

Ziv, Jacob and Abraham Lempel (1978). “Compression of individual sequences
via variable-rate coding”. In: IEEE Transactions on Information Theory 24.5,
pp. 530–536.

272

http://abcnotation.com/wiki/abc:standard:v2.1
http://abcnotation.com/wiki/abc:standard:v2.1

Appendix A

Contents of the Accompanying CD

The accompanying CD contains accessory digital material relating to this disserta-
tion. Refer to table A.1 for a detailed description of the CD contents.

Table A.1: CD Contents

Folder Name Description

Analysis Analysis reports generated with MPS.

Class Diagrams Class diagrams of data representation models developed for
MPS.

Corpus Corpus of compositions in MusicXML format used for analysis
and search applications.

Composer Compositions generated by the evolutionary algorithm and
related files.

Documentation The complete MPS user documentation and reference in PDF
and Hypertext Markup Language (HTML) format.

Examples Example compositions in MC2L format along with corre-
sponding tree model and stream model visualizations, scores,
MIDI files and audio files in MPEG Audio Layer III (MP3)
format.

MIDI MIDI file examples and corresponding MP3 audio files.

Source Code The complete source code of MPS including auxiliary files and
build scripts.

273

Appendix B

Code Examples

B.1 Composition Language Grammar

⌥ ⌅
1 /**
2 * Grammar of the Musical Context Composition Language (MC2L)
3 * Component of Music Processing Suite (MPS)
4 *
5 * Created by David Hofmann <dev@davehofmann.de>
6 */
7 grammar eu.hfm.mps.dsl.MusicalCompositionLanguage with org.eclipse.xtext.common.

Terminals
8

9 import "http://www.hfm.eu/mps/compositionContextModel"
10 import "http://www.eclipse.org/emf /2002/ Ecore" as ecore
11

12 /*
13 * Root parser rule for MCL files
14 */
15 Model:
16 imports += Import*
17 headers += Header*
18 (
19 rootNode = RootNode
20 nodes += Node*
21)?;
22

23 /*
24 * Terminal for integer numbers
25 */
26 terminal INT returns ecore::EInt: ’-’? (’0’..’9’)+;
27

28 /*
29 * Terminal for identifiers
30 */
31 terminal ID: (’a’..’z’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;
32

33 /*
34 * Terminal for note names (can have zero or n #/b suffixes)
35 */

274

36 terminal NOTENAME: (’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’A’ | ’B’)((’#’)+ | (’b’)+)?;
37

38 /*
39 * datatype rule for floating point numbers
40 */
41 FLOAT returns ecore:: EDouble: (INT ’.’ INT);
42

43 /*
44 * need this datatype rule in order to allow keywords as identifiers , too
45 */
46 IDENTIFIER: ID | ’percussion ’ | ’synth’ | ’treble ’ | ’alto’ | ’tenor’ | ’bass’;
47

48 Import:
49 ’import ’ importURI=STRING;
50

51 Header:
52 Definition | Metadata;
53

54 RootNode returns Node:
55 {Node} ’composition ’ (fixed ?= ’fixed’)? (final ?= ’final ’)? (’{’ children +=

Node* ’}’)?;
56

57 Node:
58 (Context | Modifier | ControlStructure | Generator)
59 (fixed ?= ’fixed’)?
60 (final ?= ’final’)?
61 (’{’ children += Node* ’}’ | ’,’ children += Node)?;
62

63 Context:
64 TonalSystem | TimeSignature | Tempo | HarmonicContext | Key | DynamicContext |

Fragment | FragmentReference | Instrument | Scale | HarmonicRhythm |
HarmonicProgression | Pitches | Rhythm | Envelope | Lyrics | CustomContext;

65

66 Modifier:
67 RhythmicModifier | TonalModifier | HarmonicModifier;
68

69 RhythmicModifier:
70 RhythmicDisplacement | RhythmicInsertion | Augmentation | Diminution |

RhythmicExtension | RhythmicAdjustment;
71

72 TonalModifier:
73 Transposition | Inversion | ParallelInterval;
74

75 HarmonicModifier:
76 HarmonyModifier;
77

78 ControlStructure:
79 Repetition | Parallelization | Iteration | Condition | While | FunctionCall |

Sequence | Switch | Counter;
80

81 Generator:
82 ChordGenerator | ArpeggioGenerator;
83

84 // ***************************** Metadata *****************************
85

86 Metadata:
87 Title | Composer | Poet | Copyright;
88

275

89 Title:
90 ’title ’ title=STRING;
91

92 Composer:
93 ’composer ’ composer=STRING;
94

95 Poet:
96 ’poet’ poet=STRING;
97

98 Copyright:
99 ’copyright ’ copyright=STRING;

100

101 // ***************************** Definitions *****************************
102

103 Definition:
104 InstrumentDefinition | InstrumentSetDefinition | TonalSystemDefinition |

ScaleDefinition;
105

106 // ***************************** Instrument Definitions

107 InstrumentDefinition:
108 ’instrumentDef ’ name=IDENTIFIER ’{’
109

110 (’type’ instrumentType=InstrumentType)?
111 & (’percussionMidiNote ’ percussionMidiNote=INT)?
112 & (’pitchRange ’ pitchRange=Range)?
113 & (’maxSimultaneousNotes ’ maxSimultaneousNotes=INT)?
114 & (’events ’ ’{’ eventParameters += InstrumentParameter+ ’}’)?
115 & (’continuous ’ ’{’ continuousParameters += InstrumentParameter+ ’}’)?
116 & (’scoreLabel ’ scoreLabel=STRING)?
117 & (’lilyPondInstrumentName ’ lilyPondInstrumentName=STRING)?
118 & (’defaultClef ’ defaultClef=Clef)?
119 & (’defaultOctave ’ defaultOctave=INT)?
120 & (’notationOctaveOffset ’ notationOctaveOffset=Expression)?
121

122 ’}’;
123

124 enum InstrumentType:
125 DEFAULT=’default ’ | PERCUSSION=’percussion ’ | SYNTH=’synth ’;
126

127 InstrumentParameter:
128 modifiers += ParameterModifer* type=ParameterType name=IDENTIFIER range=Range (’

default ’ defaultValue=Expression)?;
129

130 Range:
131 ’[’ lowerBound=Expression ’..’ upperBound=Expression ’]’;
132

133 enum ParameterModifer:
134 OPTIONAL=’optional ’;
135

136 enum ParameterType:
137 INT=’int’ | FLOAT=’float’ | BOOLEAN=’boolean ’;
138

139 enum Clef:
140 TREBLE=’treble ’ | ALTO=’alto’ | TENOR=’tenor’ | BASS=’bass’;
141

142 InstrumentParameterReference:
143 parameter =[InstrumentParameter|IDENTIFIER];

276

144

145 InstrumentSetDefinition:
146 ’instrumentSetDef ’ name=IDENTIFIER
147 ’{’
148 (instruments += [InstrumentDefinition|IDENTIFIER])+
149 ’}’;
150

151 // ***************************** Tonal Systems *****************************
152

153 TonalSystemDefinition:
154 ’tonalSystemDef ’ name=IDENTIFIER
155 ’{’
156 ’stepsPerOctave ’ stepsPerOctave=INT
157 notes += TonalSystemNote*
158 midiMapping=TonalSystemMidiMapping
159 ’}’;
160

161 TonalSystemMidiMapping:
162 ’midiMapping ’ ’step’ step=INT ’->’ midiNote=INT;
163

164 TonalSystemNote:
165 ’note’ name=NOTENAME ’step’ step=INT;
166

167 Lyrics:
168 ’lyrics ’ lyrics=STRING;
169

170 CustomContext:
171 ’customContext ’ name=ID value=Expression;
172

173

174 // ***************************** Scales *****************************
175

176 ScaleDefinition:
177 ’scaleDef ’ name=IDENTIFIER ’{’
178 ’degrees ’ (degrees += INT)+
179 ’}’;
180

181 // ***************************** Control Structures *****************************
182

183 Fragment:
184 ’fragment ’ name=IDENTIFIER (’scoreLabel ’ scoreLabel=STRING)? (’internalSectionId ’

internalSectionId=STRING)?;
185

186 FragmentReference:
187 ’fragmentRef ’ part=[Fragment|IDENTIFIER];
188

189 Parallelization:
190 { Parallelization} ’parallel ’;
191

192 Repetition:
193 ’repeat ’ times=Expression (’as’ variableDeclaration=SimpleVariableDeclaration)?;
194

195 Sequence:
196 ’sequence ’ times=Expression ’times ’ ’step’ step=Expression (’mode’

transpositionMode=IntervalMode)?;
197

198 Iteration:

277

199 ’for’ variable=SimpleVariableDeclaration ’in’ startValue=Expression ’to’ endValue
=Expression (’step’ step=Expression)?;

200

201 Condition:
202 ’if’ condition=Expression
203 ’{’
204 trueNodes += Node*
205 ’}’
206 (
207 ’else’
208 ’{’
209 falseNodes += Node*
210 ’}’
211)?
212 ;
213

214 While:
215 ’while ’ condition=Expression
216 ’{’
217 children += Node+
218 ’}’;
219

220 Switch:
221 {Switch}’switch ’
222 (’childIndexSequence ’ (childIndexSequence += INT)*)?;
223

224 Counter:
225 ’counter ’ variableDeclaration=SimpleVariableDeclaration;
226

227 SimpleVariableDeclaration returns VariableDeclaration:
228 name=IDENTIFIER;
229

230 // ***************************** Contexts *****************************
231

232 HarmonicContext:
233 ’harmony ’ harmony=AbstractHarmony;
234

235 AbstractHarmony:
236 Harmony | Figure;
237

238 Harmony:
239 ((root=OctavelessNoteReference (minor ?= ’m’)?))
240 (additions += HarmonyAddition)*
241 (’/’ (bassNote=OctavelessNoteReference))?
242 (resolutionHints += HarmonyResolutionHint *);
243

244 HarmonyResolutionHint:
245 NoteExclusion;
246

247 NoteExclusion:
248 ’-’ noteReference=NoteReference;
249

250 Figure:
251 (rootAccidental = Accidental)?
252 rootFigure=RomanNumeral
253 (additions += AdditionalHarmonyNote)*
254 (’/’ (bassAccidental = Accidental)? bassFigure=RomanNumeral)?
255 ;

278

256

257 enum RomanNumeral:
258 TONICMAJOR=’I’ | TONICMINOR=’i’ |
259 SECONDMAJOR=’II’ | SECONDMINOR=’ii’ |
260 THIRDMAJOR=’III’ | THIRDMINOR=’iii’ |
261 FOURTHMAJOR=’IV’ | FOURTHMINOR=’iv’ |
262 FIFTHMAJOR=’V’ | FIFTHMINOR=’v’ |
263 SIXTHMAJOR=’VI’ | SIXTHMINOR=’vi’ |
264 SEVENTHMAJOR=’VII’ | SEVENTHMINOR=’vii’;
265

266 HarmonyAddition:
267 AdditionalHarmonyNote | HarmonySpecification;
268

269 AdditionalHarmonyNote:
270 (accidental=Accidental)? step=INT;
271

272 Accidental: ’#’ | ’b’;
273

274 HarmonySpecification:
275 chordSymbol=ChordSymbol;
276

277 enum ChordSymbol:
278 MAJ7=’maj7’ | SUS4=’sus4’ | DIMINISHED=’°’ | AUGMENTED=’+’ | POWER=’p’ | SUS2=’

sus2’ | M7=’m7’;
279

280 Key:
281 ’key’ harmony=Harmony;
282

283 HarmonicProgression:
284 ’harmonicProgression ’ harmonies += AbstractHarmony +;
285

286 Rhythm:
287 ’rhythm ’ (partial=Partial (notes += RhythmicNote)* | (notes += RhythmicNote)+);
288

289 HarmonicRhythm:
290 ’harmonicRhythm ’ notes += RhythmicNote +;
291

292 RhythmicNote:
293 RhythmNote | Rest | Tuplet;
294

295 RhythmNote:
296 noteDuration=NoteDuration (tiedToNextNote ?= ’~’)?;
297

298 Rest:
299 ’_’ noteDuration=NoteDuration;
300

301 Tuplet:
302 ’(’ numActualNotes=INT ’/’ numInsteadOfNotes=INT ’:’ notes += RhythmicNote+ ’)’;
303

304 Partial:
305 ’(’ notes += RhythmicNote+ ’)’;
306

307 NoteDuration:
308 CanonicalNoteDuration | FractionNoteDuration;
309

310 /*
311 * Integer value means reciprocal value , e.g. 4 for a quarter note.

279

312 * If an exclamation mark is added , it means no reciprocal (e.g. 2! means a
duration of 2 whole notes)

313 * A dotted note is expanded to the 1.5-fold duration (can be applied multiple
times)

314 */
315 CanonicalNoteDuration:
316 number=INT (notReciprocal ?= ’!’)? (dots = Dots)?;
317

318 // need an enum here due to ambiguity problems in grammar , (’.’)+ does not work
319 enum Dots:
320 ONE=’.’ | TWO=’..’ | THREE=’...’ | FOUR=’....’;
321

322 /*
323 * Alternatively , the note length can be given as fraction (e.g. 3/4).
324 */
325 FractionNoteDuration:
326 numerator=INT ’/’ denominator=INT;
327

328 TimeSignature:
329 ’time’ numerator=INT ’/’ denominator=INT;
330

331 Tempo:
332 ’tempo ’ startTempo=Expression (’->’ endTempo=Expression)? (’noteDuration ’

noteDuration=CanonicalNoteDuration)?;
333

334 Instrument:
335 ’instrument ’ instrumentDefinition =[InstrumentDefinition|IDENTIFIER] (’staffId ’

staffId=STRING)?;
336

337 TonalSystem:
338 ’tonalSystem ’ tonalSystem =[TonalSystemDefinition|IDENTIFIER];
339

340 Pitches:
341 ’pitches ’ (’(’ (parameters += PitchParameter)+ ’)’)? pitches += Pitch+;
342

343 PitchParameter:
344 HarmonicReference | StartOctave | FindNearestOctave;
345

346 FindNearestOctave:
347 ’findNearestOctave ’ findNearestOctave ?= ’true’;
348

349 HarmonicReference:
350 ’relative ’ ’to’ harmonyReference=HarmonyReference;
351

352 enum HarmonyReference:
353 KEY=’key’ | HARMONY=’harmony ’;
354

355 Pitch:
356 SinglePitch | Chord;
357

358 SinglePitch:
359 NoteReference | DegreeReference | NoteExpression;
360

361 NoteExpression:
362 ’@’ expression=Expression;
363

364 DegreeReference:
365 degree=INT (accidental=Accidental)? (octave=Octave)?;

280

366

367 Chord:
368 ’[’ chordNotes += SinglePitch+ ’]’;
369

370 NoteReference:
371 tonalSystemNote =[TonalSystemNote|NOTENAME] (octave=Octave)?;
372

373 OctavelessNoteReference:
374 tonalSystemNote =[TonalSystemNote|NOTENAME];
375

376 Octave:
377 ’_’ number=INT;
378

379 DynamicContext:
380 LoudnessContext | SuddenDynamics;
381

382 LoudnessContext:
383 ’loudness ’ loudness=Loudness (’->’ targetLoudness=Loudness)?;
384

385 enum Loudness:
386 CURRENT=’current ’ | SILENCE=’silence ’ | FORTE=’f’ | FORTISSIMO=’ff’ |

FORTEFORTISSIMO=’fff’ | FFFF=’ffff’ | PIANO=’p’ | PIANISSIMO=’pp’ |
PIANOPIANISSIMO=’ppp’ | PPPP=’pppp’ | MEZZOFORTE=’mf’ | MEZZOPIANO=’mp’;

387

388 SuddenDynamics:
389 ’sudden ’ type=SuddenDynamicsType;
390

391 enum SuddenDynamicsType:
392 SFORZATO=’sf’ | RINFORZANDO=’rf’ | FORTEPIANO=’fp’;
393

394 Scale:
395 ’scale ’ scale=[ScaleDefinition|IDENTIFIER];
396

397 Envelope:
398 ’envelope ’ ’for’ instrumentParamenterReference=InstrumentParameterReference ’

startValue ’ startValue=Expression
399 points += EnvelopePoint +;
400

401 EnvelopePoint:
402 ’point ’ value=Expression ’time’ time=Expression (’curve’ curve=InterpolationType)

?;
403

404 enum InterpolationType:
405 STEP=’step’ | LINEAR=’linear ’ | EXPONENTIAL=’exponential ’ ;
406

407

408 // ***************************** Modifiers *****************************
409

410 // Tonal Modifiers
411

412 Transposition:
413 ’transpose ’ (’mode’ transpositionMode=IntervalMode)? interval=Expression;
414

415 enum IntervalMode:
416 ABSOLUTE=’absolute ’ | INSCALE=’inScale ’ | OCTAVES=’octaves ’;
417

418 Inversion:
419 ’inversion ’ referenceDegree=Expression;

281

420

421 ParallelInterval:
422 ’parallelInterval ’ (’mode’ mode=IntervalMode)? interval=Expression;
423

424 // Rhythmic Modifiers
425

426 RhythmicDisplacement:
427 ’rhythmicDisplacement ’ (’mode’ mode=DisplacementMode)? ’offset ’ offset=Expression

;
428

429 enum DisplacementMode:
430 DISCARD=’discard ’ | WRAP=’wrap’;
431

432 RhythmicInsertion:
433 ’rhythmicInsertion ’ (’mode’ mode=RhythmicInsertionMode)? ’offset ’ offset=

NoteDuration rhythm=Rhythm ;
434

435 enum RhythmicInsertionMode:
436 INSERT=’insert ’ | OVERWRITE=’overwrite ’;
437

438 Augmentation:
439 { Augmentation} ’augmentation ’ (factor=Factor)?;
440

441 Diminution:
442 {Diminution} ’diminution ’ (factor=Factor)?;
443

444 Factor:
445 ’factor ’ expression=Expression;
446

447 RhythmicExtension:
448 ’rhythmicExtension ’ duration=NoteDuration;
449

450 RhythmicAdjustment:
451 ’rhythmicAdjustment ’
452 (
453 (’startDelta ’ startDelta=NoteDuration) |
454 (’endDelta ’ endDelta=NoteDuration) |
455 (’startDelta ’ startDelta=NoteDuration ’endDelta ’ endDelta=NoteDuration)
456);
457

458 // Harmonic Modifiers
459

460 HarmonyModifier:
461 ’harmonyModifier ’ harmonyAdditions += HarmonyAddition +;
462

463 // ************************** Generators **************************
464

465 StartOctave:
466 ’startOctave ’ octave=Expression;
467

468 ChordGenerator:
469 { ChordGenerator} ’chordGenerator ’
470

471 (
472 (’numberOfNotes ’ numberOfNotes=Expression)?
473 & (’includeBassNote ’ includeBassNote ?= ’true’)?
474 & (’startInversion ’ startInversion=Expression)?
475 & (’findNearestInversion ’ findNearestInversion=BooleanLiteral)?

282

476 & (’startOctave ’ startOctave=Expression)?
477 & (’resetOnContextChange ’ resetOnContextChange ?=’true’)?
478);
479

480 ArpeggioGenerator:
481 { ArpeggioGenerator} ’arpeggioGenerator ’
482

483 (
484 (’numberOfNotes ’ numberOfNotes=Expression)?
485 & (’includeBassNote ’ includeBassNote ?= ’true’)?
486 & (’startInversion ’ startInversion=Expression)?
487 & (’findNearestInversion ’ findNearestInversion=BooleanLiteral)?
488 & (’startOctave ’ startOctave=Expression)?
489 & (’resetOnContextChange ’ resetOnContextChange ?=’true’)?
490 & (’noteIndexSequence ’ noteIndexSequence += INT+)?
491);
492

493 // ************************** Expression Language **************************
494

495 Expression:
496 BooleanExpression;
497

498 BooleanExpression returns Expression:
499 Comparison
500 (({ AndOrExpression.left=current} op=BooleanOperator) right=Comparison)*;
501

502 BooleanOperator:
503 "or" | "and";
504

505 Comparison returns Expression:
506 Equals
507 (({ Comparison.left=current} op=ComparisonOperator) right=Equals)*;
508

509 ComparisonOperator:
510 "<" | ">" | "<=" | ">=";
511

512 Equals returns Expression:
513 Addition
514 (({ Equals.left=current} op=EqualsOperator) right=Addition)*;
515

516 EqualsOperator:
517 ’==’ | ’!=’;
518

519 Addition returns Expression:
520 Multiplication
521 (({ Addition.left=current} op=AdditiveOperator) right=Multiplication)*;
522

523 AdditiveOperator:
524 ’+’ | ’-’;
525

526 Multiplication returns Expression:
527 UnaryExpression (({ Multiplication.left=current} op=MultiplicativeOperator)

right=UnaryExpression)*;
528

529 MultiplicativeOperator:
530 "*"| "/" | "%";
531

532 UnaryExpression returns Expression:

283

533 { BooleanNegation} =>"!" expression=UnaryExpression | /* right associativity ,
can be recursive */

534 { ArithmeticSigned} =>"-" expression=Atomic | /* right associativity */
535 Atomic;
536

537 Atomic returns Expression:
538 ’(’ Expression ’)’ |
539 Literal |
540 VariableReference |
541 FunctionCall;
542

543 FunctionCall:
544 name=IDENTIFIER ’(’ (parameters += Expression (’,’ parameters += Expression)*)? ’

)’;
545

546 Literal:
547 IntegerLiteral |
548 FloatLiteral |
549 StringLiteral |
550 BooleanLiteral;
551

552 VariableReference:
553 variable =[VariableDeclaration|IDENTIFIER];
554

555 IntegerLiteral:
556 value=INT;
557

558 StringLiteral:
559 value=STRING;
560

561 FloatLiteral:
562 value=FLOAT;
563

564 BooleanLiteral:
565 { BooleanLiteral} ((value ?= ’true’) | ’false’);⌃ ⇧

Listing B.1: Musical Context Composition Language Grammar

B.2 MusicXML Code Example

The following listing contains the MusicXML code of J. S. Bach’s Sinfonia 1,
BWV 787, measures one and two.⌥ ⌅

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <!DOCTYPE score -partwise PUBLIC "-// Recordare //DTD MusicXML 3.0 Partwise //EN" "http

:// www.musicxml.org/dtds/partwise.dtd">
3 <score -partwise >
4 <work >
5 <work -title >Sinfonia 1</work -title >
6 </work >
7 <identification >
8 <creator type=" composer">J. S. Bach </creator >
9 <encoding >

10 <software >MuseScore 2.1.0 </ software >
11 <encoding -date >2018 -03 -13 </ encoding -date >

284

12 <supports element =" accidental" type="yes"/>
13 <supports element ="beam" type="yes"/>
14 <supports element =" print" attribute ="new -page" type="yes" value="yes"/>
15 <supports element =" print" attribute ="new -system" type="yes" value ="yes"/>
16 <supports element ="stem" type="yes"/>
17 </encoding >
18 </identification >
19 <defaults >
20 <scaling >
21 <millimeters >7.05556 </ millimeters >
22 <tenths >40</tenths >
23 </scaling >
24 <page -layout >
25 <page -height >1683.36 </ page -height >
26 <page -width >1190.88 </page -width >
27 <page -margins type="even">
28 <left -margin >56.6929 </left -margin >
29 <right -margin >56.6929 </ right -margin >
30 <top -margin >56.6929 </top -margin >
31 <bottom -margin >113.386 </ bottom -margin >
32 </page -margins >
33 <page -margins type="odd">
34 <left -margin >56.6929 </left -margin >
35 <right -margin >56.6929 </ right -margin >
36 <top -margin >56.6929 </top -margin >
37 <bottom -margin >113.386 </ bottom -margin >
38 </page -margins >
39 </page -layout >
40 <word -font font -family =" FreeSerif" font -size ="10"/ >
41 <lyric -font font -family =" FreeSerif" font -size ="11"/ >
42 </defaults >
43 <credit page ="1">
44 <credit -words default -x="595.44" default -y="1626.67" justify =" center" valign ="

top" font -size ="24" > Sinfonia 1</credit -words >
45 </credit >
46 <credit page ="1">
47 <credit -words default -x="595.44" default -y="1569.97" justify =" center" valign ="

top" font -size ="14" >BWV 787</credit -words >
48 </credit >
49 <credit page ="1">
50 <credit -words default -x="1134.19" default -y="1526.67" justify =" right" valign ="

bottom" font -size ="12">J. S. Bach </credit -words >
51 </credit >
52 <part -list >
53 <score -part id="P1">
54 <part -name >Piano </part -name >
55 <part -abbreviation >Pno.</part -abbreviation >
56 <score -instrument id="P1-I1">
57 <instrument -name >Piano </ instrument -name >
58 </score -instrument >
59 <midi -device id="P1-I1" port ="1"></midi -device >
60 <midi -instrument id="P1-I1">
61 <midi -channel >1</midi -channel >
62 <midi -program >1</midi -program >
63 <volume >78.7402 </ volume >
64 <pan >0</pan >
65 </midi -instrument >
66 </score -part >

285

67 </part -list >
68 <part id="P1">
69 <measure number ="1" width ="523.57" >
70 <print >
71 <system -layout >
72 <system -margins >
73 <left -margin >21.00 </left -margin >
74 <right -margin >-0.00</right -margin >
75 </system -margins >
76 <top -system -distance >170.00 </top -system -distance >
77 </system -layout >
78 <staff -layout number ="2">
79 <staff -distance >65.00 </ staff -distance >
80 </staff -layout >
81 </print >
82 <attributes >
83 <divisions >8</divisions >
84 <key >
85 <fifths >0</fifths >
86 </key >
87 <time symbol =" common">
88 <beats >4</beats >
89 <beat -type >4</beat -type >
90 </time >
91 <staves >2</staves >
92 <clef number ="1">
93 <sign >G</sign >
94 <line >2</line >
95 </clef >
96 <clef number ="2">
97 <sign >F</sign >
98 <line >4</line >
99 </clef >

100 </attributes >
101 <note >
102 <rest/>
103 <duration >2</duration >
104 <voice >1</voice >
105 <type >16th </type >
106 <staff >1</staff >
107 </note >
108 <note default -x="107.21" default -y=" -30.00" >
109 <pitch >
110 <step >G</step >
111 <octave >4</octave >
112 </pitch >
113 <duration >2</duration >
114 <voice >1</voice >
115 <type >16th </type >
116 <stem >up </stem >
117 <staff >1</staff >
118 <beam number ="1">begin </beam >
119 <beam number ="2">begin </beam >
120 </note >
121 <note default -x="134.86" default -y=" -25.00" >
122 <pitch >
123 <step >A</step >
124 <octave >4</octave >

286

125 </pitch >
126 <duration >2</duration >
127 <voice >1</voice >
128 <type >16th </type >
129 <stem >up </stem >
130 <staff >1</staff >
131 <beam number ="1"> continue </beam >
132 <beam number ="2"> continue </beam >
133 </note >
134 <note default -x="162.51" default -y=" -20.00" >
135 <pitch >
136 <step >B</step >
137 <octave >4</octave >
138 </pitch >
139 <duration >2</duration >
140 <voice >1</voice >
141 <type >16th </type >
142 <stem >up </stem >
143 <staff >1</staff >
144 <beam number ="1">end </beam >
145 <beam number ="2">end </beam >
146 </note >
147 <note default -x="190.16" default -y=" -15.00" >
148 <pitch >
149 <step >C</step >
150 <octave >5</octave >
151 </pitch >
152 <duration >2</duration >
153 <voice >1</voice >
154 <type >16th </type >
155 <stem >down </stem >
156 <staff >1</staff >
157 <beam number ="1">begin </beam >
158 <beam number ="2">begin </beam >
159 </note >
160 <note default -x="217.81" default -y=" -10.00" >
161 <pitch >
162 <step >D</step >
163 <octave >5</octave >
164 </pitch >
165 <duration >2</duration >
166 <voice >1</voice >
167 <type >16th </type >
168 <stem >down </stem >
169 <staff >1</staff >
170 <beam number ="1"> continue </beam >
171 <beam number ="2"> continue </beam >
172 </note >
173 <note default -x="245.46" default -y=" -5.00">
174 <pitch >
175 <step >E</step >
176 <octave >5</octave >
177 </pitch >
178 <duration >2</duration >
179 <voice >1</voice >
180 <type >16th </type >
181 <stem >down </stem >
182 <staff >1</staff >

287

183 <beam number ="1"> continue </beam >
184 <beam number ="2"> continue </beam >
185 </note >
186 <note default -x="273.11" default -y="0.00" >
187 <pitch >
188 <step >F</step >
189 <octave >5</octave >
190 </pitch >
191 <duration >2</duration >
192 <voice >1</voice >
193 <type >16th </type >
194 <stem >down </stem >
195 <staff >1</staff >
196 <beam number ="1">end </beam >
197 <beam number ="2">end </beam >
198 </note >
199 <note default -x="300.76" default -y="5.00" >
200 <pitch >
201 <step >G</step >
202 <octave >5</octave >
203 </pitch >
204 <duration >2</duration >
205 <voice >1</voice >
206 <type >16th </type >
207 <stem >down </stem >
208 <staff >1</staff >
209 <beam number ="1">begin </beam >
210 <beam number ="2">begin </beam >
211 </note >
212 <note default -x="328.41" default -y="0.00" >
213 <pitch >
214 <step >F</step >
215 <octave >5</octave >
216 </pitch >
217 <duration >2</duration >
218 <voice >1</voice >
219 <type >16th </type >
220 <stem >down </stem >
221 <staff >1</staff >
222 <beam number ="1"> continue </beam >
223 <beam number ="2"> continue </beam >
224 </note >
225 <note default -x="356.07" default -y="5.00" >
226 <pitch >
227 <step >G</step >
228 <octave >5</octave >
229 </pitch >
230 <duration >2</duration >
231 <voice >1</voice >
232 <type >16th </type >
233 <stem >down </stem >
234 <staff >1</staff >
235 <beam number ="1"> continue </beam >
236 <beam number ="2"> continue </beam >
237 </note >
238 <note default -x="383.72" default -y="10.00" >
239 <pitch >
240 <step >A</step >

288

241 <octave >5</octave >
242 </pitch >
243 <duration >2</duration >
244 <voice >1</voice >
245 <type >16th </type >
246 <stem >down </stem >
247 <staff >1</staff >
248 <beam number ="1">end </beam >
249 <beam number ="2">end </beam >
250 </note >
251 <note default -x="411.37" default -y="0.00" >
252 <pitch >
253 <step >F</step >
254 <octave >5</octave >
255 </pitch >
256 <duration >2</duration >
257 <voice >1</voice >
258 <type >16th </type >
259 <stem >down </stem >
260 <staff >1</staff >
261 <beam number ="1">begin </beam >
262 <beam number ="2">begin </beam >
263 </note >
264 <note default -x="439.02" default -y="10.00" >
265 <pitch >
266 <step >A</step >
267 <octave >5</octave >
268 </pitch >
269 <duration >2</duration >
270 <voice >1</voice >
271 <type >16th </type >
272 <stem >down </stem >
273 <staff >1</staff >
274 <beam number ="1"> continue </beam >
275 <beam number ="2"> continue </beam >
276 </note >
277 <note default -x="466.67" default -y="5.00" >
278 <pitch >
279 <step >G</step >
280 <octave >5</octave >
281 </pitch >
282 <duration >2</duration >
283 <voice >1</voice >
284 <type >16th </type >
285 <stem >down </stem >
286 <staff >1</staff >
287 <beam number ="1"> continue </beam >
288 <beam number ="2"> continue </beam >
289 </note >
290 <note default -x="494.32" default -y="0.00" >
291 <pitch >
292 <step >F</step >
293 <octave >5</octave >
294 </pitch >
295 <duration >2</duration >
296 <voice >1</voice >
297 <type >16th </type >
298 <stem >down </stem >

289

299 <staff >1</staff >
300 <beam number ="1">end </beam >
301 <beam number ="2">end </beam >
302 </note >
303 <backup >
304 <duration >32</ duration >
305 </backup >
306 <note default -x="79.56" default -y=" -130.00" >
307 <pitch >
308 <step >C</step >
309 <octave >3</octave >
310 </pitch >
311 <duration >8</duration >
312 <voice >5</voice >
313 <type >quarter </type >
314 <stem >up </stem >
315 <staff >2</staff >
316 </note >
317 <note >
318 <rest/>
319 <duration >4</duration >
320 <voice >5</voice >
321 <type >eighth </type >
322 <staff >2</staff >
323 </note >
324 <note default -x="245.46" default -y=" -95.00" >
325 <pitch >
326 <step >C</step >
327 <octave >4</octave >
328 </pitch >
329 <duration >4</duration >
330 <voice >5</voice >
331 <type >eighth </type >
332 <stem >down </stem >
333 <staff >2</staff >
334 </note >
335 <note default -x="300.76" default -y=" -100.00" >
336 <pitch >
337 <step >B</step >
338 <octave >3</octave >
339 </pitch >
340 <duration >4</duration >
341 <voice >5</voice >
342 <type >eighth </type >
343 <stem >down </stem >
344 <staff >2</staff >
345 <beam number ="1">begin </beam >
346 </note >
347 <note default -x="356.07" default -y=" -110.00" >
348 <pitch >
349 <step >G</step >
350 <octave >3</octave >
351 </pitch >
352 <duration >4</duration >
353 <voice >5</voice >
354 <type >eighth </type >
355 <stem >down </stem >
356 <staff >2</staff >

290

357 <beam number ="1"> continue </beam >
358 </note >
359 <note default -x="411.37" default -y=" -105.00" >
360 <pitch >
361 <step >A</step >
362 <octave >3</octave >
363 </pitch >
364 <duration >4</duration >
365 <voice >5</voice >
366 <type >eighth </type >
367 <stem >down </stem >
368 <staff >2</staff >
369 <beam number ="1"> continue </beam >
370 </note >
371 <note default -x="466.67" default -y=" -100.00" >
372 <pitch >
373 <step >B</step >
374 <octave >3</octave >
375 </pitch >
376 <duration >4</duration >
377 <voice >5</voice >
378 <type >eighth </type >
379 <stem >down </stem >
380 <staff >2</staff >
381 <beam number ="1">end </beam >
382 </note >
383 </measure >
384 <measure number ="2" width ="532.92" >
385 <note default -x="12.64" default -y="-5.00">
386 <pitch >
387 <step >E</step >
388 <octave >5</octave >
389 </pitch >
390 <duration >16</ duration >
391 <tie type=" start"/>
392 <voice >1</voice >
393 <type >half </type >
394 <stem >up </stem >
395 <staff >1</staff >
396 <notations >
397 <tied type=" start"/>
398 </notations >
399 </note >
400 <note default -x="259.84" default -y=" -5.00">
401 <pitch >
402 <step >E</step >
403 <octave >5</octave >
404 </pitch >
405 <duration >8</duration >
406 <tie type="stop"/>
407 <voice >1</voice >
408 <type >quarter </type >
409 <stem >up </stem >
410 <staff >1</staff >
411 <notations >
412 <tied type="stop"/>
413 </notations >
414 </note >

291

415 <note default -x="391.19" default -y="0.00" >
416 <pitch >
417 <step >F</step >
418 <alter >1</alter >
419 <octave >5</octave >
420 </pitch >
421 <duration >8</duration >
422 <voice >1</voice >
423 <type >quarter </type >
424 <accidental >sharp </accidental >
425 <stem >up </stem >
426 <staff >1</staff >
427 </note >
428 <backup >
429 <duration >32</ duration >
430 </backup >
431 <note >
432 <rest >
433 <display -step >C</display -step >
434 <display -octave >4</display -octave >
435 </rest >
436 <duration >2</duration >
437 <voice >2</voice >
438 <type >16th </type >
439 <staff >1</staff >
440 </note >
441 <note default -x="43.85" default -y=" -50.00" >
442 <pitch >
443 <step >C</step >
444 <octave >4</octave >
445 </pitch >
446 <duration >2</duration >
447 <voice >2</voice >
448 <type >16th </type >
449 <stem >down </stem >
450 <staff >1</staff >
451 <beam number ="1">begin </beam >
452 <beam number ="2">begin </beam >
453 </note >
454 <note default -x="74.71" default -y=" -45.00" >
455 <pitch >
456 <step >D</step >
457 <octave >4</octave >
458 </pitch >
459 <duration >2</duration >
460 <voice >2</voice >
461 <type >16th </type >
462 <stem >down </stem >
463 <staff >1</staff >
464 <beam number ="1"> continue </beam >
465 <beam number ="2"> continue </beam >
466 </note >
467 <note default -x="105.56" default -y=" -40.00" >
468 <pitch >
469 <step >E</step >
470 <octave >4</octave >
471 </pitch >
472 <duration >2</duration >

292

473 <voice >2</voice >
474 <type >16th </type >
475 <stem >down </stem >
476 <staff >1</staff >
477 <beam number ="1">end </beam >
478 <beam number ="2">end </beam >
479 </note >
480 <note default -x="136.42" default -y=" -35.00" >
481 <pitch >
482 <step >F</step >
483 <octave >4</octave >
484 </pitch >
485 <duration >2</duration >
486 <voice >2</voice >
487 <type >16th </type >
488 <stem >down </stem >
489 <staff >1</staff >
490 <beam number ="1">begin </beam >
491 <beam number ="2">begin </beam >
492 </note >
493 <note default -x="167.27" default -y=" -30.00" >
494 <pitch >
495 <step >G</step >
496 <octave >4</octave >
497 </pitch >
498 <duration >2</duration >
499 <voice >2</voice >
500 <type >16th </type >
501 <stem >down </stem >
502 <staff >1</staff >
503 <beam number ="1"> continue </beam >
504 <beam number ="2"> continue </beam >
505 </note >
506 <note default -x="198.13" default -y=" -25.00" >
507 <pitch >
508 <step >A</step >
509 <octave >4</octave >
510 </pitch >
511 <duration >2</duration >
512 <voice >2</voice >
513 <type >16th </type >
514 <stem >down </stem >
515 <staff >1</staff >
516 <beam number ="1"> continue </beam >
517 <beam number ="2"> continue </beam >
518 </note >
519 <note default -x="228.98" default -y=" -20.00" >
520 <pitch >
521 <step >B</step >
522 <octave >4</octave >
523 </pitch >
524 <duration >2</duration >
525 <voice >2</voice >
526 <type >16th </type >
527 <stem >down </stem >
528 <staff >1</staff >
529 <beam number ="1">end </beam >
530 <beam number ="2">end </beam >

293

531 </note >
532 <note default -x="259.84" default -y=" -15.00" >
533 <pitch >
534 <step >C</step >
535 <octave >5</octave >
536 </pitch >
537 <duration >2</duration >
538 <voice >2</voice >
539 <type >16th </type >
540 <stem >down </stem >
541 <staff >1</staff >
542 <beam number ="1">begin </beam >
543 <beam number ="2">begin </beam >
544 </note >
545 <note default -x="290.69" default -y=" -20.00" >
546 <pitch >
547 <step >B</step >
548 <octave >4</octave >
549 </pitch >
550 <duration >2</duration >
551 <voice >2</voice >
552 <type >16th </type >
553 <stem >down </stem >
554 <staff >1</staff >
555 <beam number ="1"> continue </beam >
556 <beam number ="2"> continue </beam >
557 </note >
558 <note default -x="321.54" default -y=" -15.00" >
559 <pitch >
560 <step >C</step >
561 <octave >5</octave >
562 </pitch >
563 <duration >1</duration >
564 <voice >2</voice >
565 <type >32nd </type >
566 <stem >down </stem >
567 <staff >1</staff >
568 <beam number ="1"> continue </beam >
569 <beam number ="2"> continue </beam >
570 <beam number ="3">begin </beam >
571 </note >
572 <note default -x="340.83" default -y=" -20.00" >
573 <pitch >
574 <step >B</step >
575 <octave >4</octave >
576 </pitch >
577 <duration >1</duration >
578 <voice >2</voice >
579 <type >32nd </type >
580 <stem >down </stem >
581 <staff >1</staff >
582 <beam number ="1"> continue </beam >
583 <beam number ="2"> continue </beam >
584 <beam number ="3">end </beam >
585 </note >
586 <note default -x="360.11" default -y=" -10.00" >
587 <pitch >
588 <step >D</step >

294

589 <octave >5</octave >
590 </pitch >
591 <duration >2</duration >
592 <voice >2</voice >
593 <type >16th </type >
594 <stem >down </stem >
595 <staff >1</staff >
596 <beam number ="1">end </beam >
597 <beam number ="2">end </beam >
598 </note >
599 <note default -x="391.19" default -y=" -15.00" >
600 <pitch >
601 <step >C</step >
602 <octave >5</octave >
603 </pitch >
604 <duration >2</duration >
605 <voice >2</voice >
606 <type >16th </type >
607 <stem >down </stem >
608 <staff >1</staff >
609 <beam number ="1">begin </beam >
610 <beam number ="2">begin </beam >
611 </note >
612 <note default -x="422.05" default -y=" -5.00">
613 <pitch >
614 <step >E</step >
615 <octave >5</octave >
616 </pitch >
617 <duration >2</duration >
618 <voice >2</voice >
619 <type >16th </type >
620 <stem >down </stem >
621 <staff >1</staff >
622 <beam number ="1"> continue </beam >
623 <beam number ="2"> continue </beam >
624 </note >
625 <note default -x="452.90" default -y=" -5.00">
626 <pitch >
627 <step >E</step >
628 <octave >5</octave >
629 </pitch >
630 <duration >1</duration >
631 <voice >2</voice >
632 <type >32nd </type >
633 <stem >down </stem >
634 <staff >1</staff >
635 <beam number ="1"> continue </beam >
636 <beam number ="2"> continue </beam >
637 <beam number ="3">begin </beam >
638 </note >
639 <note default -x="472.19" default -y=" -10.00" >
640 <pitch >
641 <step >D</step >
642 <octave >5</octave >
643 </pitch >
644 <duration >1</duration >
645 <voice >2</voice >
646 <type >32nd </type >

295

647 <stem >down </stem >
648 <staff >1</staff >
649 <beam number ="1"> continue </beam >
650 <beam number ="2"> continue </beam >
651 <beam number ="3">end </beam >
652 </note >
653 <note default -x="491.47" default -y=" -15.00" >
654 <pitch >
655 <step >C</step >
656 <octave >5</octave >
657 </pitch >
658 <duration >2</duration >
659 <voice >2</voice >
660 <type >16th </type >
661 <stem >down </stem >
662 <staff >1</staff >
663 <beam number ="1">end </beam >
664 <beam number ="2">end </beam >
665 </note >
666 <backup >
667 <duration >32</ duration >
668 </backup >
669 <note default -x="13.00" default -y=" -95.00" >
670 <pitch >
671 <step >C</step >
672 <octave >4</octave >
673 </pitch >
674 <duration >8</duration >
675 <voice >5</voice >
676 <type >quarter </type >
677 <stem >down </stem >
678 <staff >2</staff >
679 </note >
680 <note >
681 <rest/>
682 <duration >4</duration >
683 <voice >5</voice >
684 <type >eighth </type >
685 <staff >2</staff >
686 </note >
687 <note default -x="198.13" default -y=" -100.00" >
688 <pitch >
689 <step >B</step >
690 <octave >3</octave >
691 </pitch >
692 <duration >4</duration >
693 <voice >5</voice >
694 <type >eighth </type >
695 <stem >down </stem >
696 <staff >2</staff >
697 </note >
698 <note default -x="259.84" default -y=" -105.00" >
699 <pitch >
700 <step >A</step >
701 <octave >3</octave >
702 </pitch >
703 <duration >4</duration >
704 <voice >5</voice >

296

705 <type >eighth </type >
706 <stem >down </stem >
707 <staff >2</staff >
708 <beam number ="1">begin </beam >
709 </note >
710 <note default -x="321.54" default -y=" -110.00" >
711 <pitch >
712 <step >G</step >
713 <octave >3</octave >
714 </pitch >
715 <duration >4</duration >
716 <voice >5</voice >
717 <type >eighth </type >
718 <stem >down </stem >
719 <staff >2</staff >
720 <beam number ="1"> continue </beam >
721 </note >
722 <note default -x="391.19" default -y=" -105.00" >
723 <pitch >
724 <step >A</step >
725 <octave >3</octave >
726 </pitch >
727 <duration >4</duration >
728 <voice >5</voice >
729 <type >eighth </type >
730 <stem >down </stem >
731 <staff >2</staff >
732 <beam number ="1"> continue </beam >
733 </note >
734 <note default -x="452.90" default -y=" -125.00" >
735 <pitch >
736 <step >D</step >
737 <octave >3</octave >
738 </pitch >
739 <duration >4</duration >
740 <voice >5</voice >
741 <type >eighth </type >
742 <stem >down </stem >
743 <staff >2</staff >
744 <beam number ="1">end </beam >
745 </note >
746 <barline location =" right">
747 <bar -style >light -heavy </bar -style >
748 </barline >
749 </measure >
750 </part >
751 </score -partwise >⌃ ⇧

Listing B.2: MusicXML representation of J. S. Bach, Sinfonia 1, BWV 787, mm. 1–2

297

	List of Figures
	List of Tables
	Acronyms
	Introduction
	I Theory and Models
	State of the Art
	Music Representation
	Musical Instrument Digital Interface
	MuseData
	Humdrum
	abc
	GUIDO
	LilyPond
	MusicXML
	music21
	SARAH

	Computers and Creativity: An Overview
	Computers as Tools in Creative Processes
	Computer Models of Creativity
	Constraints and Creativity

	Algorithmic Composition
	Historical Context
	Stochastic Processes
	Markov Models
	Generative Grammars
	Transition Networks
	Artificial Neural Networks
	Evolutionary Algorithms

	Summary

	Context Layer Composition Model
	Motivation
	Introductory Example
	Model Structure
	Instrumentation Context
	Metric Contexts
	Harmonic Contexts
	Rhythmic Contexts
	Pitch Contexts
	Loudness Contexts
	Lyrics
	Musical Labels
	Custom Contexts

	Time Model
	Parallel Streams
	Stream Sequencers and Stream Events
	Key Benefits and Versatility of the Model
	Summary

	Context Tree Model and Composition Language
	Motivation
	Overview
	Introductory Example
	Key Concepts
	Hierarchical Structures
	Inheritance
	Polymorphism
	Auto Expansion
	Modularization using Fragments

	Contexts
	Rhythms
	Meter
	Tempo
	Instruments
	Pitches
	Scales
	Loudness
	Harmonic Contexts
	Lyrics
	Custom Contexts

	Context Modifiers
	Rhythmic Modifiers
	Pitch Modifiers
	Harmonic Modifiers

	Context Generators
	Chord Generators
	Arpeggio Generators

	Control Structures
	Parallelizations
	Repetitions
	Conditions
	Iterations
	Sequences
	While-Loops
	Switches

	Expressions
	Literals
	Operators
	Type Conversions
	Function Calls

	Implementation Details
	Composition Domain Model
	Domain-Specific Composition Language

	Summary

	II System Applications
	Model Transformations
	Transformation Infrastructure Overview
	Transforming Context Tree Models to Context Layer Models
	Transforming Context Layer Models to Score Representations
	LilyPond Compiler

	Transforming Context Layer Models to SuperCollider
	Immediate Compilation and Execution

	Transforming MIDI Files to Context Layer Models
	Transforming MusicXML Files to Context Layer Models
	Deriving and Compressing Context Tree Composition Models
	Related Work
	Compression Algorithm
	Future Work

	Graphical User Interface
	Summary

	Context-based Corpus Search
	Motivation
	Formulating Musical Search Queries
	Search Methodology
	Search Query Context Layer Models
	Search Algorithm
	Search Result Presentation
	Results
	Conclusion

	Music Analysis
	Motivation
	Analysis Scopes
	Rhythmic Analysis
	Note Duration Analysis
	Note Density Analysis
	Beat Analysis
	Combined Note Duration and Beat Analysis

	Pitch Analysis
	Piano Roll Representations
	Pitch Distributions
	Interval Analysis
	Dissonance Analysis
	Harmonic Analysis

	Progression Analysis
	Harmonic Progression Graphs
	Lyric Progression Graphs

	Comparative Analysis of Large Corpora
	Comparing Composition Collections
	Analyzing Large Corpora

	Conclusion

	III Automated Composition
	Evolutionary Composition Algorithm
	Motivation
	Composition vs. Improvisation
	Composition Algorithm
	Overview
	Fitness Function
	Multi-objective Optimization
	Crossover Operators
	Mutation Operators
	Parameters
	Genetic Programming Specifics
	Example Evolutionary Algorithm Run

	Applications
	Composition Crossover and Variations
	Style Imitations
	Generating Compositions with Predefined Structures
	Generating Compositions with Multiple Sections

	Summary

	IV Conclusions and Appendices
	Conclusions
	Bibliography
	Contents of the Accompanying CD
	Code Examples
	Composition Language Grammar
	MusicXML Code Example

